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EXECUTIVE SUMMARY 

Structural integrity of aircraft structures is of continual interest to the aviation community. 
Although air travel is remarkably safe, there is unwavering interest in reducing the probability of 
structural failure, particularly as the number of flights continues to increase annually. In 1991, 
Congress mandated that the FAA establish an Aging Aircraft Program. The focus of this program 
was age-related structural problems with airplanes used in public transportation. At the time, 
Congress excluded the general aviation (GA) fleet from the mandate. However, the FAA 
determined that as the GA fleet continues to age, there is a concern about ensuring the continued 
airworthiness of the diverse GA fleet.  
 
To guide future efforts in addressing the effects of aging on GA airplanes, the FAA’s Small 
Airplane Directorate developed an FAA Aging GA Roadmap that serves as a guide to proactively 
manage the overall airworthiness of aging GA airplanes. One of the four major focus areas of the 
Roadmap is data-driven risk assessment and management. As a result, a research and development 
program was undertaken to develop the required methodology, computer software, and supporting 
data to conduct structural risk assessments.  
 
Although the U.S. Air Force has been employing damage tolerance analysis methods since the 
early 70s to design new aircraft and determine inspection intervals for aging aircraft, until now, 
little work has been done on probabilistic damage tolerance (DT) for GA. A probabilistic DT 
evaluation of the GA fleet can provide important insights into the criticality/severity of a 
potentially serious structural issue and provide mechanisms whereby inspection and maintenance 
operations can be included into the simulation, giving operators the opportunity to assess the 
benefits of maintenance actions. 
 
In this research, a methodology and a computer code, SMART|DT, were developed to address 
probabilistic DT of GA structural issues. The methodology and computer code considers the 
random variables: loading (gust and maneuver loads, sink rate, flight velocity duration, flight 
weight duration), material behavior (fracture toughness, crack growth rate constants, yield stress, 
ultimate stress), geometric variables (initial crack size, hole diameter, hole edge distance, aircraft 
ratio), and inspections (repair crack size, probability-of-detection, probability-of-inspection). 
These random variables are used within a Monte Carlo simulation or numerical integration 
algorithm to calculate the probability-of-failure as a function of hours/flights and to assess the 
benefits of maintenance actions. This methodology can be used for any section of the 
aircraft―such as the wing, fuselage, and vertical stabilizer―if the loading, geometry, and material 
properties are available for the desired location. 
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1.  INTRODUCTION 

In 1991, Congress mandated that the FAA establish an Aging Aircraft Program. The focus of this 
program was age-related structural problems with airplanes used in public transportation. At the 
time, Congress excluded the general aviation (GA) fleet from the mandate. However, the FAA 
determined that as the GA fleet continues to age, there is a concern about ensuring the continued 
airworthiness of the diverse GA fleet. To guide future efforts in addressing the effects of aging on 
GA airplanes, the FAA’s Small Airplane Directorate developed an FAA Aging GA Roadmap that 
serves as a guide to proactively managing the overall airworthiness of aging GA airplanes. One of 
the four major focus areas of the Roadmap is data-driven risk assessment and management. As a 
result, a research and development program was undertaken to develop the required methodology, 
computer software, and supporting data to conduct structural risk assessments.  
 
The GA fleet includes approximately 150,000 airplanes that were certificated with no fatigue 
evaluation requirements. The average age of these airplanes is approximately 40 years and many 
are high-time. There is little information regarding airworthiness limitations for this aging GA 
fleet. In recent years, the industry and the FAA have reacted to several fatigue-related accidents 
and incidents on these fleets. To mitigate the aging effects on the GA fleet, an efficient probabilistic 
damage tolerance analysis (PDTA) approach is needed [1–3]. A probabilistic damage tolerance 
(DT) method requires a combination of deterministic crack growth, inspection methods, 
probabilistic methods, and random variable modeling to provide a single probability-of-failure 
(POF), cumulative POF, and hazard rate. A PDTA approach also provides a mechanism whereby 
inspection and maintenance operations can be included in the simulation, therefore providing 
engineers with the opportunity to assess the benefits of maintenance actions. 
 
2.  METHODOLOGY OVERVIEW 

The methodology in this work encompasses the required elements necessary to conduct DT 
analysis: aircraft loading generation, extreme value of the maximum load per flight distribution, 
crack growth analysis, inspection and repairs, and POF calculations. Figure 1 shows, 
schematically, the probabilistic DT process developed in this research. 
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Figure 1. Schematic representation of probabilistic DT analysis 

2.1   LOAD AND STRESS SPECTRUM GENERATION 

Load generation is one of the most important components in DT analysis. No commercial software 
is available to generate realistic load spectra; each aircraft manufacturer usually has its own 
computer code to generate aircraft loading. This section reviews how this research generates 
realistic load spectra accounting for five different flight regimes: maneuver, gust, taxi, landing and 
rebound, and ground-air-ground (GAG).  
 

The input parameters used to generate a load spectrum are given in Table 1. Table 1. 
Variables used to generate load spectra 

Variable Description 

Number of Flights Number of flights to be generated in the flight 
spectra 

Exceedance Curves Usage exceedance curves 
Maneuver Load Limit Factor Maximum load limit factors for maneuver load 
Gust Load Limit Factor Maximum load limit factors for gust load 
Maximum Ground Stress Airplane ground stress in psi 
Maximum One g Stress One g stress of an airplane in psi 

Maximum Aircraft Velocity Average speed during flight, maximum aircraft safe 
cruise speed (VNO) or VMO. In nautical miles. 

Flight Length-Velocity Matrix Probabilistic flight length and airspeed data 
Flight Length-Weight Matrix Probabilistic flight length and weight data 

 VMO = maximum operating limit speed; VNO = maximum aircraft safe cruise speed 
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The steps to generate the spectrum are: 
 
1. Provide input parameters (a summary of the input parameters is presented in Table 1). 
2. Generate random realizations of the parameters: maneuver and gust exceedance curves; 

flight-length and aircraft velocity, as per flight length-velocity and maximum aircraft 
velocity; and one-g-stress, as per flight length-weight and maximum one-g-stress. 

3. Calculate the number of occurrences for each of the flight stages using the methodology in 
4 (also shown in appendix A).  

4. Add incomplete cycles from previous flights to the current flight stresses after each of the 
stresses and occurrences are calculated for the current flight. Next, extract the complete 
stresses and save the incomplete stresses from the current flight for the next flight. 

5. Randomize the load pairs within a flight generated in the previous steps. 
6. Save the maximum load per flight to later estimate the extreme value distribution (EVD). 
7. Repeat steps 1–6 for the given number of flights. 
8. Randomize the flights using a uniform density function after they have all been generated 

so that there is an equal probability that the high severity loads will appear at any flight 
during the crack growth analysis. 

 
Figure 2 shows, schematically, the process to generate a flight spectrum. Figure 3 shows a 
spectrum example, including all the flight stages for a single flight. 
 

 

Figure 2. Schematic representation of spectrum generation and input variables 
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Figure 3. A representative spectrum 

2.1.1  User-defined Spectrum  

A user-defined spectrum is also allowed when the SMART exceedance libraries do not include the 
user application. The user spectrum uses the same format as the one used by the AFGROW (Air 
Force Growth) software. AFGROW is a damage tolerance analysis (DTA) framework that allows 
users to analyze crack initiation, fatigue crack growth (FCG), and fracture to predict the life of metallic 
structures. The Air Force Research Laboratory originally developed AFGROW. It is now being developed 
and maintained by LexTech, Inc. [5].  
 
This option bypasses the internal generation of a spectrum using the exceedance curves, and the 
user spectrum is used instead. Figures 4 and 5 present a simple example of the AFGROW spectrum 
files (.sp3 and .sub). 

 

 

Figure 4. AFGROW user spectrum input data file 
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Figure 5. AFGROW user spectrum companion data file 

2.2   EXTREME VALUE MAXIMUM LOAD PER FLIGHT DISTRIBUTION GENERATION 

An EVD of the maximum load per flight of the loading spectrum is critical for a PDTA of a GA 
aircraft. The EVD parameters are important because the structural integrity of the aircraft depends 
on the maximum load seen by the structure during a specified number of flights. 
  
In PDTA, the EVD must be generated from the same loading used for crack growth analysis. In 
this program, the maximum load per flight is extracted and the software continues generating sets 
of flights until the parameters converge, as shown schematically in Figure 6. The convergence is 
computed by comparing the empirical cumulative density function (CDF) against the CDF 
determined by the fitting parameters and ensuring that the difference is less than the threshold (1E-
6). 
 

 

Figure 6. EVD generation  
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Using this set of maximum load per flight, the EVD is calculated using the generalized extreme 
value theory. The generalized extreme value theory can be explained as follows: Suppose 

pXXX ,...,, 21  is a sequence of independent random variables having a common distribution 
function, )(xF . If Mp  represents the maximum of the process over n observations, then, as per 
the extreme value theory, the distribution of Mp can be derived exactly for all the values of  
p using:  
 

 { } { } { } { } ( )npp zFzXPzXPzXPzMP =≤××≤×≤=≤ ...21  (1) 
   

where P{Mp ≤ z} is the probability that random variable Mp is less than or equal to the number z, 
and n is the number of flights [6, 7]. Therefore, if the CDF of a random variable is given, then an 
EVD of the variable over p samples (realizations) can be estimated using equation 1. This may not 
be immediately helpful in practice because the probability density function (PDF) of aircraft 
loading is typically available in a closed-form equation. The generalized extreme value theory 
provides the exact solution for a standard distribution, such as uniform, normal, or Weibull 
distribution. When the PDF of the parent distribution is not available and the above approach 
cannot be used, the following approach can be employed. 
 
From the extreme value theory, it is known that the asymptotic form of the extreme value of 
maximum data, as , can take one of three forms: Gumbel, Frechet, or Weibull, Types I, II, 
and III, respectively. The three possible models for the maximum can be encapsulated in the 
generalized extreme value model as:  
 

 


























 −

+−==
− ξ

σ
µξξσµ

/1

1exp),,;( xPxF  (2) 

 
The distribution in equation 2 is known as the generalized EVD [6, 7. Here, μ is the location, σ is 
the scale, and ξ is the shape parameter of the generalized EVD. The value of the shape parameter 
determines the type of distribution. The EVD converges to Weibull, Gumbel, or Frechet if the 
shape parameter value is less than zero, equal to zero, or greater than zero, respectively. Figure 7 
shows an example PDF and CDF for each of the three generalized EVD distributions. 

 

 

Figure 7. EVD: PDF and CDF examples 
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The inverse of the generalized EVD, also known as the quantile function, for ( )1,0∈P  is [6, 7]: 
 

 ( )[ ] ξ

ξ
σ

ξ
σµξσµ −− ⋅








+








−== PxPF ln),,;(1  (3) 

 
For a given value of x and its probability, the inverse function is an equation with three unknowns: 
location, scale, and shape. Therefore, three equations are required to obtain unique values for μ, σ, 
and ξ. In the absence of known equations, their estimated values can be obtained as follows.  
 
Sorting all of the maximum-load-per-flight elements will produce an empirical CDF. The position 
of a given x value within the sort is its probability. For example, the median value in the sorted 
array has a probability of 0.50. Thus, it is possible to choose three such values and solve for the 
parameters of the EVD. For example, the method can choose the values associated with p=(0.50, 
0.25, 0.125). This methodology chooses at least seven distinct sets of three values, solves the three 
equations for ξσµ ,, , and averages the results to obtain good initial estimates of ξσµ ,, . 

 
The method described above is called the method of quantiles. The average of the seven distinct 
points in the method of quantiles is the starting point for a minimization method. The minimization 
method used is the Nelder-Mead algorithm. This algorithm finds a set of parameters that minimizes 
the total absolute error while maintaining a conservative probability-of-survival. The EVD fits 
using this method tend to have correlations above 99.5% when the fits are compared with the 
empirical CDFs [8, 9]. 

 
Figure 8 and Figure 9 show PDFs and CDFs for different GA aircraft usages. 
 

 

Figure 8. EVD PDF distributions 
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Figure 9. EVD CDF distributions 

2.3   POF CALCULATIONS 

The single flight probability-of-failure (SFPOF) is defined as the POF1 on the next flight assuming 
survival until the current flight (t). Failure is defined as the occurrence of unstable fracture, 

, where  denotes the stress intensity factor and  is the fracture toughness. An 
equivalent statement is that failure occurs when the residual strength (RS), , is less than or 
equal to the max stress per flight, . The RS is defined as: 
 

  (4) 

 
where  denotes the crack size, which is a function of the initial crack size ( )and the time (t); 

 is the geometry correction factor; and  is the time in flights. The definition of the RS can also 
encompass net section yield. The RS used in the calculation is the minimum of the RS due to 
fracture and net section yield.  
 
Defining the limit state as: 
 

 EVDCiRSCi DmCKtaatDmCKag σσ −= ),,,),,((),,,,,(  (5) 
 

                                                 
 
1 The probability-of-failure is defined as the probability that the maximum stress per flight will exceed the residual strength of the part.  
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failure occurs then . C and m represent the crack growth random variables (i.e., Paris 
constants and  represents the hole diameter). The POF is then given in terms of the maximum 
stress per flight, , and the RS,   
 

 ]),,,),,(([ EVDCiRSf DmCKtaaPP σσ ≤=  (6) 
or 
 

  (7) 
 
Assuming only three of the parameters in equation 6 are random variables ( , , and ), the 
SFPOF is determined by integrating the joint PDFs over the failure domain: 
 

  (8) 

 
where  are the PDFs for fracture toughness, initial crack size, and loading. This 
equation is cumbersome to use because the integration limits of the random variables depend on 
the inequality equation . A better computational formulation is to rewrite equation (8) in 
terms of the indicator function as:  
 

  (9) 

 
where the indicator function, I, is nonzero only in the failure domain. That is: 
 

  (10) 

 
Therefore, the range of each random variable in equation 9 spans the range of the corresponding 
probability distribution. The SFPOF formulation used here is monotonically increasing with t. 
 
2.3.1  Conditional Expectation Formulation 

Equation 9 can be simplified by using a conditional expectation (CE) approach. For CE, one 
random variable is integrated analytically. For SFPOF calculations,  and  are considered to 
be deterministic (e.g.,  where ai* and KC* are known values of the initial fracture 
crack size and fracture toughness, respectively). Then, the RS is deterministic and the SFPOF is 
the probability of having a stress greater than the RS. This probability equals

, where  is the CDF of the extreme value loading. The actual 
randomness in  and is then incorporated within the multidimensional integral as: 
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  (11) 

 
In other words, the SFPOF becomes the expected value of the complementary CDF of the max 
stress per flight. 
 
Additional random variables can be added to equation 11 in a straightforward manner, as shown 
for multiple random variables x in equation 12. Computer codes such as PROF [10–12] and 
SMART|DT solve the conditional expectation equation (i.e., equation 11). This SFPOF 
formulation is monotonically increasing with t . 
 
2.3.2  Design Limit Load 

It may be desirable to use a fixed value for the max stress per flight (e.g., the design limit load). In 
this case, the problem formulation is unchanged, except  becomes a step function at the limit 
load value. Equation 11 is still used to compute the SFPOF. The step function in equation 11 works 
as follows: if , the POF is equal to zero; otherwise the POF is equal to one. 
 
2.3.3  Lincoln and Freudenthal Formulations 

The SFPOF that assumes all samples will survive until time t  is often called the Lincoln 
formulation and is expressed as follows: 
 

 [ ]∫
∞

∞−

−= xxx dfKtaaFtPOF CiRSEVD )())),,(((1)( σ  (12) 

where fx(x) is the PDF for a set of random variables, x. 
 
The Freudenthal formulation considers survival until time t as: 
 

  (13) 

 

where the term  is the probability of surviving until time t [10]. 

2.3.4  Cumulative POF  

The cumulative POF for SFPOF is calculated assuming independence as  
[10–12]: 

  (14) 

 
The cumulative total probability-of-failure (CTPOF) is always monotonically increasing and 
approaches 1 as .  
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2.3.5  Hazard Rate 

The hazard function is defined as the probability that, if an airplane survives until time t, it will 
fail at the next flight normalized by the reliability term ( ). The hazard function 
can be expressed as [10–12]: 
 

 ∫ ∏
∞

∞−
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2.4  INSPECTIONS AND REPAIRS 

The PDTA provides a mechanism whereby inspection and maintenance operations can be included 
into the simulation, therefore providing engineers with the opportunity to assess the benefits of 
maintenance actions. Those benefits include optimizing inspections in which the user inputs a risk 
level and an optimization algorithm can find the optimum inspections times; additionally, cost 
optimization can be analyzed. This section reviews two different methods that can be employed.  
2.4.1  Probability of Inspection 

The fundamental concept regarding the consideration of inspection is based on branching over the 
probable events after each inspection. The probability of occurrence of each branched event is then 
determined based on the probability of crack detection. 
 
The inspection method constructs a weighted tree of POF curves that reflect the probability of 
detecting a crack (and conducting a repair). To better understand the methodology, consider Figure 
10. The inspection points are denoted as KIII ,...,, 21 , where k  is the total number of inspections. 
The inspection points are indicated with i; so a generic inspection point is iI .  
 

 

Figure 10. Probability weights for crack paths 
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At each inspection, two paths are possible (non-detection and detection) based upon the 
probability-of-detection (POD) value of the crack size at the time of inspection. The probability of 
being on any branch is given by jip , . After the ith inspection, there are i+1 possible paths. The 

probability of all paths must sum to one based on axioms of probability . 

 
Probability calculations are shown in Figure 11. The POF for a path is the POF for a crack on the 
path times the probability of being on a path. For example, after inspection 1, if a crack is not 
detected, the probability of being on that path is )(1 aPOD− . The POF for a crack on that path is 
calculated as ORIPOF , where ORIPOF  is the POF for the original part. Therefore, the POF for that 
path is ORIPOFaPOD ⋅− ))(1( . It is computed similarly for other paths. 
 

 

Figure 11. Probability calculations for inspections 

2.4.2  Numerical Integration 

For numerical integration, after any inspection, some cracks are detected and repaired. The PDF 
of the crack size after inspection ( afterf ) is composed of a combination of two PDFs: the grown 
crack size PDF before inspection ( beforef ) and the repair crack size distribution ( repairf ). The repair 
crack size distribution is often the same as the initial crack size, but this is not required.  
 
The crack size PDF after inspection is given as:  
 

 )()](1[)()( Redet afaPODafPaf beforepairafter −+=  (16) 
where  

 ∫
∞

=
0

det )()( daafaPODP before  (17) 
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is the percentage of detected cracks. 
 
The probability of detecting a crack is determined by the POD curve. The POD is a CDF that varies 
between 0 and 1 and is a function of crack size. Larger cracks have a higher probability of being 
detected. After a crack is detected, it is assumed that the crack is repaired. An example of a POD 
curve is given using a lognormal distribution in Figure 12 (additional POD curves can be found in 
[13]). Because the crack size cannot be negative, the lognormal distribution is a common choice.  
 
Figure 13 shows an example of different POD effects: when an excellent inspection is conducted 
(97% of the cracks were detected), the afterF  CDF appears very close to the repairF CDF. A poor 
inspection (7% of the cracks were detected) is also shown in Figure 13, where afterF  CDF appears 
very close to the beforeF CDF. The x-axis represents crack size and the y-axis represents the 
probability value. 
 

 

Figure 12. Probability of detecting curve example 
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Figure 13. Inspection effect example 

 
2.5  RANDOM VARIABLES 

An overview of the random variables is presented in table 2. Further details for each random 
variable are presented in appendix A. 
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Table 2. Random variable classification 

Variable Description 
Loading Probabilistic – See Table 1 for more detail 

Initial crack size 

Probabilistic (lognormal distribution) 
Probabilistic (Weibull distribution) 
User input tabular 
deterministic 

Fracture toughness Probabilistic (normal distribution) 
Crack growth  
parameters (C and m) Probabilistic (binormal distribution) 

Aircraft crack ratio Probabilistic (normal distribution) 
Yield and ultimate stress Probabilistic (normal distribution) 
Edge distance Probabilistic (normal distribution) 
Hole diameter  Probabilistic (normal distribution) 

Probability of inspection   
Probabilistic (lognormal distribution) 
User input tabular 
deterministic 

Repair crack size 

Probabilistic (lognormal distribution) 
Probabilistic (Weibull distribution) 
User input tabular 
deterministic  

Probability of inspection Deterministic 
 
2.6   CRACK GROWTH OPTIONS  

Three different options are available to perform crack growth analysis, as shown in table 3. The 
crack growth options are explained in detail. 
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 Table 3. Crack growth methods 

Method Description 

Master curve 

- Representative spectrum 
- Two random variables can be used (initial crack 

size and fracture toughness) 
- Very computationally efficient 

NASGRO® direct link 
- Representative spectrum 
- Multiple random variables can be used 
- Very slow computationally 

Kriging 

- Representative spectrum 
- Multiple random variables can be used (initial 

crack size and fracture toughness) 
- Computationally efficient 

2.6.1   Master Curve Approach  

The master curve is a technique used to predict crack growth using a pre-existing crack growth 
curve and RS curve (master curve). The master curve methodology starts by selecting a very small 
initial crack size and a very large fracture toughness so that the master curve will span realizations 
used during the probability calculations (e.g., ).  
 
Then, for random initial crack sizes and fracture toughness, the master curve can be interrogated 
to obtain the “a vs. N” and “RS vs. N” curves for any set of random initial crack size and fracture 
toughness. Note, however, that the master curve approach cannot be used if there are any random 
variables that affect the master curve (e.g., da/dN [crack growth rate] data, geometry data, etc.). 
 
Figure 14 shows the basic procedure to establish the master curve and specific crack growth curve 
for a given realization of initial crack size. The procedure is explained step by step as follows (a 
similar procedure is used for the RS curve):  
 
• Generate the “a vs. N” curve, starting with a small initial crack size and extending to a 

large crack size. This curve is set as the master curve (red curve). 
• Generate a random realization for the initial crack size ( ). 
• Interpolate the corresponding value of life (Ni) corresponding to  from the master curve. 
• Take the values of “a” greater than “ ,” with the corresponding values of “N” (green 

values over red curve), and shift the curve to the left (time zero) by subtracting the 
interpolated value, , from the values of N from the master curve. 

• The crack growth curve for the random realization, “ ” is represented by the green dashed 
curve. 
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Figure 14. Master curve procedure  

2.6.2   NASGRO Link 

NASGRO [14] can be used to compute crack growth realizations (RS and crack size). The 
NASGRO link approach requires one template file (.flabat), one sample file (.sample), and the 
spectrum file (.spec or .bspec) to perform the crack growth realizations and return an .avsn file.  
 
Four different files are involved with the NASGRO link process. Three of the files are input files 
to NASGRO (.sample, .spec/.bspec, and .flabat) and one file is an output file from NASGRO 
(.avsn). Figure 15 shows, schematically, the files involved in the NASGRO runs. 

 

 

Figure 15. NASGRO link files schematic  
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Each one of the file types in Figure 15 is explained as follows: 
 
The spectrum file: the loading generated using the methodology explained in section 1.1 needs to 
be transferred to NASGRO to perform the crack growth realizations. The loading file can be in 
ASCII format (.spec) or binary format (.bspec). The spectrum file is divided into four sections. 
The first contains the file title and description. This section can contain multiple lines. The 
NASGRO parser scans until it finds the second part, which begins with the first line that contains 
double quotes (e.g., “S0” in table 4). This line lists the designation of stress quantities 
corresponding to the columns of data given in the fourth part. The designation is the same as those 
by NASGRO (i.e., S0, S1, S2, and S3). The stress quantity values are a function of the geometrical 
model to be analyzed in NASGRO. In general, S0 refers to the tension loading; S1 is the in-plane 
bending moment; S1 is the out-of-plane bending moment; and S3 is the pin loading [14]. The stress 
quantities are enclosed in pairs of double quotes. For example, if there is one set of data columns 
representing S0, then line 2 is listed as “S0.” If there are two sets of data columns representing S0 
and S3, then line 2 becomes “S0” “S3.” 
 
The spacing among the pairs of double quotes can be anything except a double quote. NASGRO 
determines how many stress quantities, defined by their pairs of double quotes, confirm the content 
within pairs of double quotes for the NASGRO stress quantities (S0, S1, S2, and S3) and ignores 
whatever is filled between the sequential pairs. Moreover, this assignment sequence of stress 
quantities basically defines how the columns of data are provided in the fourth part. So, for 
example, if two stress quantities are defined, with S3 to be the first and S0 to be the second, the 
assignment of stress values from the columns of data in the fourth part will become S3 (t1) and S3 
(t2), followed by S0 (t1) and S0 (t2). 
 
The third section is one single line with pairs of double quotes. This line describes how to fill in 
all other stress quantities that are not listed in the second part. The content needs to be enclosed by 
a pair of double quotes. For example, “S3=0.0” “S1=0.2*S0.” If this line is missing, the stress 
quantities not defined by the second part are assigned with a default value equal to zero. 
 
The content refers to the stress quantities not listed in the second part. For example, if stress 
quantities S0 and S1 are indicated in the second part, the referred stress quantities should be S2 
and/or S3.  
 
The content enclosed in the pair of double quotes must have an equal sign as a separator. The left 
side of the separator (i.e., the equal sign) designates the stress quantity that has not been listed in 
the second part. For example, “S1=0.75” assigns 0.75 to the S1 stress quantity and the parser will 
ensure this stress quantity has not been referred in the second part. The right side of the separator 
describes the value assigned to the stress quantity on the left side. For example, “S1=0.75” assigns 
0.75 to the S1 stress quantity. A simple feature is provided for users to specify the assignment in 
scale. For example, “S2=0.3*S0” assigns the 30% of S0 to S2.  
 
The scaled assignment needs to be in terms of the stress quantities in the second part. The 
NASGRO parser recognizes only the symbol “*” for the math/multiplication operation in the 
scaled assignment. If something else is provided, an error will be issued and the computation will 
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be terminated. If a fixed value is given on the right-hand side, then this value is assigned to all time 
points (both max. and min.) for the given stress quantity. 
 
In this part, the sequence of assigning the stress quantities is irrelevant. For example, the 
assignment from “S2=0.75” “S1=0.1*S3” is the same as this assignment: “S1=0.1*S3” “S2=0.75.” 
 
The fourth section contains the columns of data in subsequent lines (one group of lines per flight). 
That is: 
 
Flight number    number of steps in the flight 
Number of cycles in step 1 Si (t1)  Si (t2) Sj (t1) Sj (t2), etc. 
Number of cycles in step 2 Si (t1)  Si (t2) Sj (t1) Sj (t2), etc. 
 
where the total number of columns is 1 + (2 × the number of stress quantities listed in the second 
part), and there is one line for each step in the flight. 
 
Three different example spectra are shown in Table 4–6. The first example, shown in Table 4, uses 
the first four lines for title and description. The second part indicates that the columns of data 
defined in the fourth part are for the S0 stress quantity. Because the third part is not defined, the 
other three stress quantities, S1, S2, and S3, are zero by default. 

Table 4. Spectrum file: example 1 

Example input file #1 with two flights and only one non-zero stress quantity 
Example input file #1 with two flights and only one non-zero stress quantity  
Example input file #1 with two flights and only one non-zero stress quantity  
Example input file #1 with two flights and only one non-zero stress quantity 
 “S0” 
1  6 
2 16.5 10.3 
5 20.4 5.5 
1 10.4 2.2 
10 17.3 3.6 
1 11.4 4.4 
3 15.2 2.7 
2 4 
10 13.2 1.1 
3 10.6 6.6 
1 14.2 5.5 
10 13.2 1.1 
 
The second example, shown in table 5, uses the first single line for title and description. The second 
part indicates that the columns of data given in the fourth part are for the S0 and S3 stress 
quantities—that is, in respective order, S0 (t1), S0 (t2), S3 (t1), and S3 (t2). The third part specifies 
that all values (both at t1 and t2) for the S2 stress quantity are given by a specific value: 1.1. The 
S1 stress quantity, because it is not defined, is zero by default. 
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Table 5. Spectrum file: example 2 

Example input file #3 with two flights and two non-zero stress quantities 
“S0” “S3” 
“S2=1.1” 
1  6 
2 16.5 10.3 4.4 1.1 
5 20.4 5.5 6.6 1.2 
1 10.4 2.2 7.1 1.1 
10 17.3 3.6 9.3 4.4 
1 11.4 4.4 6.6 3.5 
3 15.2 2.7 14.1 3.2 
2 4 
10 13.2 1.1 4.9 0.2 
3 10.6 6.6 6.6 1.6 
1 14.2 5.5 5.3 1.6 
10 13.2 1.1 4.9 0.2 
 
The third example, shown in table 6, uses the first three lines for title and description. The second 
part indicates that the columns of data given in the fourth part are for the S0 and S3 stress 
quantities. The third part specifies that the value for S2 is always given by a specific value: 1.1. 
The value for S1 is 70% of S3. 

Table 6. Spectrum file: example 3 

Example input file #4 with two flights and two non-zero stress quantities 
Example input file #4 with two flights and two non-zero stress quantities 
Example input file #4 with two flights and two non-zero stress quantities 
“S0” “S3” 
“S1=0.7*S3” “S2=1.1” 
1  6 
2 16.5 10.3 4.4 1.1 
5 20.4 5.5 6.6 1.2 
1 10.4 2.2 7.1 1.1 
10 17.3 3.6 9.3 4.4 
1 11.4 4.4 6.6 3.5 
3 15.2 2.7 14.1 3.2 
2 4 
10 13.2 1.1 4.9 0.2 
3 10.6 6.6 6.6 1.6 
1 14.2 5.5 5.3 1.6 
10 13.2 1.1 4.9 0.2 
 
The sample file: the sample file is generated internally by the SMART code and comprises two 
sets of data. The first set is for RS computation (the RS computation is explained in detail in the 
.avsn file section) and the second set lists, line by line, the sampling parameters and their sampled 
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values. The file is in a text format. The first line in the file is the comment line, which is ignored 
by the parser. From the second to the ninth lines, data are arranged in two-column format, where 
the first column, or the keyword column, designates the keyword and the second column specifies 
its value. Table 7 lists the description of this section. Note the parser is not case sensitive to the 
keywords or their values. 

Table 7. Keywords and their values specified in sample file for RS computation 

Line Keyword Value Type Keyword Description 

2 NfMax Real number Maximum flight number 
calculation on the .avsn file 

3 OpSec Character string 
(e.g., T10 or B10) 

T10: output interval every 
10 flights in text format. 
B10: output interval every 
10 flights in binary format 

4 RS 
Two characters 
designating 
reference stress 

Select one from the stress 
quantities: ‘S0’, ‘S1’, ‘S2’, 
or ‘S3’ as reference stress to 
compute RS in equation 19 

5 RSv0 Real number Value of S0 reference stress 
6 RSv1 Real number Value of S1 reference stress 
7 RSv2 Real number Value of S2 reference stress 
8 RSv3 Real number Value of S3 reference stress 

9 NSY basis 

Character string 
designating the 
basis for Net 
Section Yielding 
(NSY) 

Select one of the stresses as 
the basis for NSY 
computation: Sy (yield 
stress), Sult (ultimate stress), 
or Sflow (flow stress) 

 
The second set for sampling parameters starts from the tenth line. It’s the label line for sampling 
parameters. Following that, the data lines list all of the parameterized values corresponding to the 
labeled columns line by line and one set at a time. The label IDs for the variables that can be 
parameterized are listed in Table 8 for a two-dimensional crack defined by its depth, “a,” and 
length, “c”. In addition, although the parser is not case sensitive to the label IDs, it is case sensitive 
to the file names (e.g., the filename for load spectrum). 
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Table 8. Variables available for parameterization in the interface implementation 

Label ID Description 

Run Sampling number ID; must be in 
sequence 

ai Initial length of “a” 
ci Initial length of “c” 

aoci Initial crack shape aspect ratio: 
aircraft 

Paris_m The slope of Paris type of FCG 
equation 

Paris_C The coefficient of Paris type of FCG 
equation 

Fract_tough Plan strain fracture toughness (K1c) 
Hole_diam Diameter of the hole 
Edge_Dist Hole Edge distance 
Sy Yield stress 
Sult Ultimate stress 
Spectrum_file The filename for load spectrum 

 
The template file is a NASGRO FLABAT file and provides the basic parameters required to 
perform a NASGRO NASFLA analysis deterministically.  
 
The .avsn file contains the results from NASGRO in terms of flight number, crack size, and RS 
calculations for failure defined by net section yielding and fracture. The following bullets describe 
the NASGRO .avsn output file that is used in SMART to perform POF calculations with and 
without inspections.  
 
The crack depths with four crack tips will be included. The four tips are designated as a-, c-, a1-, 
and c1- based on NASGRO nomenclature, as shown in Figure 16. 
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Figure 16. NASGRO crack tips schematic  

• The first column designates the flight number, according to user-specified output interval, 
provided on the .sample file. Its numerical value is an integer and should exist until the last 
output cycle. 

• The second to the fifth columns designate the crack depths with four tips. The crack tips 
are designated as a-, c-, a1-, and c1-. 
 
- These parameters are real numbers. 
- For non-applicable crack tips, their crack lengths are denoted by an ‘x’. 
- Because of crack transition — for example, from a surface crack to a corner crack 

— some crack tips may become non-applicable. It means that, although the crack 
depth of a crack tip may be available at the beginning, after a certain number of 
flight cycles, some crack tips may become unavailable. 
 

• The sixth column designates the RS. Its numerical value is always in reference to the crack 
tip(s) that survives to the last flight cycle. If there is more than one crack tip at the last 
flight cycle, the first survived crack tip from the list of a-, c-, a1-, and c1 -tips will be used. 
If paired crack tips are available, the averaged crack depths will be used. The following 
scenarios are used to illustrate how the reference crack depth is selected in determining the 
RS. 
 
- Only c-tip survives: The crack depth with this c-tip is used. 
- Only a- and c-tips survive: This is not the paired scenario. The crack depth with the 

a-tip is used. 
- Only a- and a1- tips survive: This is the paired scenario. The averaged crack depth 

from a- and a1- tips is used. 
- All four tips survive: The averaged crack depth from a- and a1- tips is used. 

 
The RS calculations contained in the .avsn file are computed by NASGRO using information from 
two sources. An example of AVSN parameters are also provided in table 9. 
 



 

24 

Table 9. AVSN, schematically, example  

Flt_no a c a1 c1 RS_by_Kc RS_by_NSY 
Integer Real Real Real Real Real Real 
Integer Real Real Real Real Real Real 
Integer Real x Real Real Real Real 
 … … … … … … 
Integer Real x x Real Real Real 
Integer Real x x x Real Real 
 … … … … … … 
Integer Real x x x Real Real 
Integer Real x x x Real Real 

 
The first source is from the .OUT2 output file from NASGRO; if the .OUT2 file exits, this signifies 
that the NASFLA analysis is complete. The information extracted from .OUT2 files is listed as 
follows: 
 
• F0, F1, F2, and F3 for RS by fracture 
• G0, G1, G2, and G3 for RS by NSY 
 
These quantities are determined during FCG analysis for stress intensity factors, K , and net 
section stress, S , resulting from combined stress quantities. Their respective definitions are given 
by [14]:  
 

 ( ) cFSFSFSFSK π33221100 +++=  
(18) 

 
 33221100 GSGSGSGSS +++=  (19) 

 
The second source is from the design or limit values collected from the sample file (Table 7). 
Respectively, they are: 
 
• The stress quantity to be used as the reference stress. It needs to be one of available stress 

quantities: 0S , 1S , 2S , and 3S , with the crack model. The computed RSs will be in 
reference to the specified reference stress quantity. 

 
• The design stress with stress quantities and design toughness for fracture (i.e., ( )designS0 , 

( )designS1 , ( )designS2 , ( )designS3 , and ( )designCK ). These are separate quantities, which are 
different from those provided in the NASGRO FLABAT file, such as those in the stress 
spectrum definition. The concept is similar to the design limit stress so that it designates 
the maximum allowed stress for a component. 
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• The basis for the NSY criterion. It can be yield stress, flow stress, or ultimate stress, 
whichever value is available in the FLABAT file. This value is designated by nS  in the 
following equation for NSYRS , RS by NSY. Therefore, nS can be yσ , flowσ , or ultσ . 

 
Using 0S  as a reference stress, the RS defined by fracture is computed using the following equation 
[14]: 
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and the RS by NSY is given by [14]: 
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Finally, table 10 lists the crack types supported by the NASGRO interface. Reference [14] shows 
the different crack-type model geometries. 
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Table 10. Supported crack types  

Crack type Description 
TC: through-thickness crack 

TC01 Through crack at center of plate 
TC02 Through crack at edge of plate 
TC03 Through crack at hole (offset) in plate 
TC04 Through crack at hole in lug 
TC05 Through crack(s) at hole in plate with row of holes 
TC08 Through crack (circumferential) in hollow cylinder 
TC11 Through crack (offset) in plate – univariant weight function 
TC12 Through crack at edge of plate – univariant weight function  
TC13 Through crack(s) at hole (offset) in plate – univariant weight function  
TC17 Through crack at edge notch in plate – univariant weight function  

TC18 Through crack(s) at (offset) embedded slot or elliptical hole in plate – univariant 
weight function  

TC19 Through crack at hole (offset) in plate with broken ligament – univariant weight 
function  

TC23 Two unequal through cracks at offset hole 
CC: corner crack 

CC01 Quarter elliptical corner crack in plate 
CC02 Quarter elliptical corner crack at hole (offset) in plate 
CC03 Quarter elliptical corner crack at hole in lug 
CC04 Quarter elliptical corner crack(s) at hole in plate 
CC08 Quarter elliptical corner crack(s) at hole (offset) in plate – univariant weight function  
CC09 Quarter elliptical corner crack in plate – bivariant weight function  
CC11 Quarter elliptical corner crack in plate – univariant weight function  
CC13 Quarter elliptical corner crack at edge notch in plate 
CC14 Quarter elliptical corner crack at (offset) embedded slot or elliptical hole in plate 
CC15 Quarter elliptical corner crack at (offset) hole in plate with broken ligament 

SC: surface crack 
SC01 Semi-elliptical surface crack in plate 
SC02 Semi-elliptical surface crack in plate – univariant weight function  
SC05 Semi-elliptical surface crack (circumferential) in hollow cylinder 
SC07 Semi-elliptical surface crack (circumferential) in solid cylinder 
SC17 Semi-elliptical surface crack (offset) in plate – univariant WF 
SC19 Semi-elliptical surface crack (offset) in plate – bivariant WF 

 
Further details about the link between the probabilistic DT code and NASGRO are provided in 
appendix B. 
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2.6.3  Kriging Metamodeling 

A Kriging surrogate model is incorporated into the code to have multiple random variables and be 
able to perform POF calculations possessing some level of mathematical efficiency..  
 
Kriging is an interpolation technique that is a type of spatial statistical method that started in the 
geosciences. This technique was originally developed by a South-African mining engineer named 
D.G. Krige in the 1950s. Krige improved his method in the 1960s in collaboration with  
G. Matheron, a French mathematician.  
 
Kriging is a linear approximation method that can provide predictions of unknown values of a 
random function, field, or process [15]. The predictions are the best linear unbiased estimators 
under the Kriging assumptions presented later in this section. Moreover, the Kriging predictions 
are weighted linear combinations of observed data (known as training data or training points). It 
is assumed by Kriging that the closer the training data are in the random variable space, the more 
positive correlation exists among the data. Mathematically, the correlation between the data is 
modeled by a second-order stationary covariance process (the expectations of the observations are 
constant and do not depend on the location in random variable space). The covariances between 
the observations depend only on the distances between the corresponding inputs. More 
specifically, the covariances decrease when the distance between the observations increases. The 
result is an estimated metamodel, such that observations closer to the prediction point get more 
weight in the predictor. When predicting the output at the observed (training) point, the prediction 
equals the observed value [15]. 
 

Ordinary Kriging 

An introduction to ordinary Kriging is presented below. Let { }nxxx ,...,, 21  be the locations or 
training points contained in the space R with k dimensions ( )kR∈x , with observed data
( ) ( ) ( ){ }nxzxzxz ,...,, 21 . It is assumed that the set of data is a realization of a stochastic process ( )⋅Z

.  
 
In ordinary Kriging, it is assumed that the process generated by the data obeys the relation: 
 

 ( ) ( )xx δµ +=Z  (22) 
 
where µ  is a non-random constant and ( )xδ is a zero-mean spatial stochastic function (i.e., 

( )( ) 0=xδE ). The covariance, ( )⋅COV , between two different locations depends only on the 
distance between the two points through the function ( )⋅C , called the covariogram, defined as:  
 
 ( ) ( )( ) ( )jiji xxCCOV −=xx δδ ,  (23) 
 
Kriging assumes the predictor, ( )0

ˆ xZ , at an arbitrary point kRx ∈0  to be in the form of: 
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  (24) 

 
where iλ  is the weight for training point i  and the weights satisfy the constraint: 
 

 ∑
=

=
n

i
i

1

0.1λ  (25) 

 
where n  represents the number of training points. Equation 24 is only true if process Z is 
intrinsically stationary. “Intrinsically stationary” means that Pr(Z(xi)<z) does not depend on x and 
the variation of the values at two spatial points only depends on the distance between the points. 
 
Under the assumptions presented in equations 24 and 25, the goal of Kriging is to find the best 
predictor ( )0

ˆ xZ . To accomplish this, the weights iλ  are obtained by minimizing the mean square 
error of the predictions. Defining the mean-squared prediction error as: 
 

 ( ) ( )( )[ ]2

00
2 ˆˆ xZxZE −=σ  (26) 

 
2σ̂  is minimized with the restriction expressed by equation 25. 

 
The Kriging predictions are weighted linear combinations of previously observed (training points) 
data, as shown schematically in Figure 17. 
 

 

Figure 17. Kriging schematic 

The Kriging prediction will, therefore, constitute a BLUE (Best Linear Unbiased Estimator) of the 
underlying process ( )xZ . Using a Lagrange’s multiplier 2m, the Lagrange’s function, L, is defined 
as: 
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Replacing the predictor ( )0

ˆ xZ  in equation 27 from equation 24, yields:  
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Equation 28 can be expanded to:  
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Taking the constants iλ  outside the expected values, equation 29 becomes: 
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In Kriging, the covariance is defined as ( ) ( ) ( )( )[ ]  C jiji xZxZExx ⋅=− and the link between the 
variogram and covariance is given by 

( ) ( ) ( )( ) ( ) ( )( ) ( )hCxxCCxZxZVarxx 2022 212121 =−−=−=−γ . Using the two statistical 
definitions above, equation 29 can be written in terms of the semi-variogram as: 
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The semi-variogram is discussed in more detail in section 3.1.5. 
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The 1+n  unknowns ( )mi ,λ  can be determined by differentiating equation 31 with respect to 
mn ,...1 λλ  and equating the results to zero. That is: 

 
 ( ) ( ) 0222 0
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∂ ∑
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mxxxxL
j

n

j
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λ
 (32) 
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The system of equations can be solved more easily using linear algebra by defining the following 
vectors and matrices: 
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and  
 

 

 (35) 

 
Therefore, the optimal mn ,...1 λλ can be obtained from solving the equation: 
 

 
0

1
0 γλ −Γ=  (36) 

 
The matrix Γ  only depends on the training points and 0γ depends on the training points and 
predictor point. 
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The ordinary Kriging estimate and Kriging variance at 0x are given by: 
 

 
 (37) 

   
 

 (38) 

The 95% confidence bound from the prediction can be computed as: 

 ( ) ( ) ( ) ( ) ( )( )0000 96.1ˆ,96.1ˆ, xxZxxZAAA UBLB εε σσ +−≡≡  (39) 

 Kriging Semi-Variogram 

In Kriging, the semi-variogram ( )hγ  is unknown and needs to be estimated from the data, where 
( )ji xxh −=  is called the lag. Note that ( ) ( )hh γγ =−  and ( ) 00 =γ . The semi-variogram is the 

mathematical representation of the relationship between the semi-variogram and lag. The semi-
variogram is the measurement of the degree of spatial dependence between the sample points at 
different locations, whereas the lag is the Euclidean distance between two sample points. A 
common practice is to estimate the semi-variogram using the equation:  
 

 ( ) ( ) ( ) ( )( )
( )
∑ ∈−=

hN
ji hxZxZ

hN
h k2 R  ,1ˆ2  γ  (40) 

 
where ( ) ( ){ }njihxxxxhN jiji ,...,3,2,1,,:, ==−≡  and ( )hN is the number of distinct pairs in 
( )hN . We notice that ( ) ( )hNhN ≠− , although ( ) ( )hh γγ ˆ2ˆ2 =− . 

 
To compute the variogram, one calculates the lag associated with each of the sample points, groups 
all the pairings having identical lags, and computes the semi-variance corresponding to each lag 
grouping using equation 40.  
 
After computing the experimental variogram, one selects and fits the theoretical variogram using 
a parameter-estimation technique, such as least-squares estimation [16, 17] or the maximum-
likelihood estimation (MLE) [16, 17].  
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There exist several theoretical variograms in the literature. The following equations present some 
of the variograms available in the literature. The variogram plays an important role in Kriging 
because the variogram is employed to generate the elements on the semi-variance matrix ( )Γ  and 
vector ( )0γ . Five common variogram models follow [18]:  
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In each of the functions above, the parameter θ  is called the range parameter or correlation length. 
It describes the rate of decay of the correlation function with respect to the distances between the 
locations. A small value of the correlation length, θ , is an indication of small spatial correlation 
and a rapid spatial variation. The parameter θ  is the distance beyond which the responses cease 
being significantly related. For larger values of the correlation length, predictions are more 
dependent on the responses of the neighboring points. The parameter c represents the limit of the 
semi-variogram value as the lag increases; it is known as the scaling parameter. Additional 
theoretical variograms are presented in [19]. 
 
The MLE is used to estimate the correlation function parameter  that is consistent with the 
experimental variogram data. MLE assumes that the observations have a known distribution shape 
(one of the five variogram models given by equations 41–45) [20].  
 
 
The variogram parameters can be estimated by maximizing the likelihood function shown in 
equation 46. 
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 Steps to Perform Kriging 

The steps to perform Kriging are summarized below: 
 
1. Obtain the training points. 
2. Using the training points, create the experimental and theoretical variograms. 

 
a. Compute the experimental variogram. 

 
i. The lag ( )jih ,  between each training point is computed and the pairs having 

similar lags are grouped. Mirrored pairs are ignored because jih ,  is the same 
as ijh , . 

ii. The semi-variance associated with each group can be computed using 
equation 40. 
 

b. Using the experimental variogram data, compute the optimal parameters θ and c on 
a selected theoretical variogram using a parameter estimation technique such as 
MLE. 
 

3. Compute the lag matrix  and lag vector ( )0xxi − . 

4. Compute the semi-variance matrix [ ]Γ  and vector ( )0γ . 
5. With the semi-variance matrix and vector computed, the Kriging weights can be computed 

as ( )0
1

0 γλ −Γ= . 
6. Predict the values at the unknown points using equation 37. 
7. Compute the Kriging variance (error) using equation 38. 
 

 Adaptive Kriging Surrogate Model for Crack Growth and RS Calculations 

The classical statement of the problem is to determine the crack growth as a function of cycles by 
integrating the equations for the crack growth rate — that is, by solving a set of coupled first-order 
differential equations [14]: 
 

  (47) 

 
In equation 47, the crack growth rate is a function of the stress intensity factor, ; the stress 
ratio, ; the fracture toughness, ; the stress intensity threshold, ; the initial crack sizes, 

; and other random variables, depending on the crack growth model. 
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To achieve the accuracy and computational speed needed for a probabilistic analysis, fracture 
mechanics software (e.g., NASGRO), in combination with an error-based Kriging surrogate 
model, can be used as the crack growth engine. 
 
As explained in the previous section, the formulation of a Kriging approach is composed of several 
steps. First, sample points (called training points) are selected. A sample point is composed of a 
specific combination of the random variables as well as their corresponding fracture mechanics 
results. After the sample points are collected, the corresponding metamodeling coefficients are 
computed.  
 
Figure 18 shows the surrogate model process schematically. It is explained as follows: 
 
1. Initial realizations of the random variables are produced and the initial training points are 

generated using the crack growth software.  
2. The response surfaces for RS and initial crack size at each of the user-defined times are 

constructed based on the initial training points. 
 

The following steps are constructed for the Monte Carlo sampling analysis at each time point, t. 
More details about the time dependence are presented in section 2.6.3.5 . 

 
3. A new realization of the random variables is generated. 
4. The surrogate models for the RS and crack size are evaluated for the random realizations 

generated in step 3. 
5. The error given by the two Kriging surrogate models (RS and crack size) is compared 

against a user-defined threshold error (section 2.6.3.6 ). 
6. If either error (RS or crack size) is not acceptable, the random realization generated in step 

3 is evaluated using the crack growth software, and the response surfaces are updated with 
the new training point. 

7. If both errors (RS and crack size) are acceptable, the process is repeated for the next 
realization. 

8. Steps 3–5 are repeated for the given number of samples. 
9. The SFPOF, hazard, and CTPOF is computed for the total number of samples. 
 
The crack size surrogate models are evaluated only when inspections are required. The crack size 
responses that have failed are removed from the analysis. Failure is defined as the RS value that is 
smaller than the maximum applied stress, as explained in section 2.3 . For this reason, the crack 
size surfaces are evaluated after the RS surfaces to check for the failure points. 
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Figure 18. Surrogate model flowchart 

 Kriging and Crack Growth Time Dependency 

Crack growth analysis is a time-dependent process. Based on the random variables (initial crack 
size, fracture toughness, Paris constants, etc.), cracks will grow and the RS will decrease as a 
function of time. To account for the time dependency in the surrogate model, the code creates 
different Kriging surfaces through time.  

The time-dependent process can be summarized as follows: 

1. The Kriging surfaces are created for each time step (the process to create the Kriging
surfaces is explained in the previous section):

a. For the RS, RS Kriging surfaces are created as a function of the random variables
at each time step requested by the user (the user selects the time frequency in which
the probabilities of failure need to be computed, as explained in section 2.6.2 ). A
schematic is shown in Figure 19, with user-defined time = 2000).

b. If an inspection occurs at time, t, crack size Kriging surfaces are created as a
function of the random variables at each inspection point, as shown schematically
in Figure 20 for two inspections (t=3000 and t=10,000).

c. The surfaces (crack sizes and RSs) are built using only the samples that survive to
that time (samples that failed at a previous time are removed from the surfaces).
Figure 21 shows the number of training points for the two Kriging surfaces
presented in Figure 19 at the two inspection points. It can be seen in Figure 21 that
the green and blue points already failed (see points illustrated with an “x” in Figure
21); therefore, the samples were removed from the Kriging surface at inspection 2
and will not be used to train the surface at inspection 2.
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Figure 19. RS Kriging surfaces 

 

Figure 20. Inspection Kriging surfaces  
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Figure 21. Training point at two different Kriging surfaces  

2. Kriging is performed for both surfaces created in step 1 for every random realization. 
3. For each random realization, the RS Kriging predictions are tested for failure using the 

EVD explained in section 2.3 . The sample is assumed failed when the POF exceeds 0.99 
( 99.0>fp ), as shown in the following equations and, schematically, in Figure 22. 

 
 ( )tEVDf RSFp −= 1  (48) 
 ( ) 99.01 =− tEVD RSF  (49) 
 ( ) ( )01.01

EVDICR FtRS −=  (50) 
   

where  denotes a critical RS value and  denotes an inspection time. Thus, if the 
RS at  is less than , the sample is assumed failed. 

 
4. When a failure occurs in the RS surface, it is also assumed that the sample failed in the 

crack size surface and the failed samples are removed from the analysis. 
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Figure 22. RS failure schematic 

The advantages of having independent surfaces through time is that the semi-variance matrices 
will be smaller (excluding time as a random variable), allowing faster operations and computation 
time. Moreover, it avoids discontinuities in the surfaces because of already failed samples; further, 
it adds the ability to better track the failed samples through time. 

 Kriging Surrogate Model Error Calculation 

The successful implementation of Kriging to perform DTA depends on the accuracy of the 
calculations of the prediction errors and their propagation. In this work, the errors are used in the 
adaptive segment of the algorithm, where the Kriging prediction uncertainty is compared with the 
user-defined allowed error.  

In this report, the error is calculated based on the Kriging variance and the assumption that ( )⋅Z  is 
Gaussian. To compute the 95% or 99% confidence bounds error (uncertainty) due to the Kriging 
prediction, the prediction interval for ( )0xZ  is used as computed in equation 39. Using the
prediction interval, the 95% or 99% confidence bounds error for the interval is computed using: 

( )( )
LB

LB

A
xZAerror 0

ˆ−
= (51) 

The error computed using equation 51 is compared against the user-defined error tolerance, as 
described in step 5 in section 2.6.3.3 .  

3. GRAPHICAL USER INTERFACE SUMMARY

A graphical user interface (GUI) was developed on visual basic to facilitate the user interaction 
with the code. The GUI was merged with the fatigue section of the code developed under FAA 
Grant 09-G-016. 



 

39 

 
The GUI allows the user to input the different variables that are required to run a PDTA, open 
existing input files, and visualize output files. The following figures demonstrate the GUI 
capabilities in more detail. 
 
Figure 23 shows the GUI main screen, the left picture starts the fatigue (linear damage) section of 
the GUI, and the right picture starts the DT section of the GUI. 
 

 

Figure 23. GUI main window 

Figure 24 shows the overview tab. The data input here is used to input information that can be 
used to describe the problem.  
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Figure 24. GUI overview tab 

Figure 25 shows the structural/fracture tab. In this tab, the user selects the crack growth method 
(master curve, Kriging, or NASGRO). The random variables required for the analysis are selected 
in this tab, and the mean and standard deviation are inputted by the user. If the analysis requires 
NASGRO, the quantities required to compute the RS are entered in this tab.  
 

 

Figure 25. GUI structural/fracture tab  
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Figure 26 shows the loading tab. Within this tab, the EVD parameters are entered if they are 
known; if the parameters are unknown, the fitting option can be used and the internal algorithm on 
the code will find the optimum parameters. The optimum parameters are computed based on the 
loading information selected by the user within this same tab on the exceedance spectra section. 
 

 

Figure 26. GUI loading tab  

Figure 27 shows the inspection tab where all the inspection information can be entered. The GUI 
allows different types of inspections at different times. 
 

 

Figure 27. GUI inspection tab 
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Figure 28 shows the method/output tab; within this tab, the user can select the integration method 
(numerical integration or Monte Carlo), the output options as evaluation frequency (at what flight 
numbers to compute the POF), and the maximum number of flights to analyze. 
  

 

Figure 28. GUI method/output tab  

 
Figure 29 presents the launch panel tab where the input file can be reviewed before running the 
executable. 
 

 

Figure 29. GUI launch panel tab 
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Figure 30 shows the results tab where the code output files can be visualized and POF plots created. 
 

 

Figure 30. GUI results tab 

4.   NUMERICAL EXAMPLES 

Three examples are shown in this section to demonstrate the different capabilities developed under 
this code. 
 
4.1   EXAMPLE ONE (USER MASTER CURVE) 

The first example presents a simple problem for a geometry with a crack in a hole to demonstrate 
the probabilistic DT methodology. For this example problem, the geometry has a closed-form 
solution for the stress intensity factor, as shown in equation 52. 
 
 aK πβσασ ⋅=⋅=  (52) 

 

where ¶ widthhole βββ ⋅= , ¶with ¶ 
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+=
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The crack growth equation is defined by the exponential function: 
 
 )*000293.0exp(0001.0 Ta ⋅=  (53) 

 
where a  represents the crack size and T is the number of cycles.  
Table 11 presents the variable declaration. 
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Table 11. Probabilistic DT example variables 

Variable Definition 
R (Radius) 0.125 in. 
W (Width) 10 in. 

Fracture Toughness Distribution 
Normal: 
      Mean = 34.8 .ksi in  
      Standard Deviation = 3.9 .ksi in  

Initial and Repair Crack Size 
Distribution 

Lognormal: 
       Mean = xµ  = 0.003 in. 
       Standard Deviation = xσ  = 0.004 in. 

EVD 

Gumble: 
      Location = 14.5 
      Scale = 0.8 
      Shape = 0.0 

POD 
Lognormal: 
      Mean = xµ  = 0.08 in. 
      Standard Deviation = xσ  = 0.07 in. 

Inspection Times 5000 and 10,000 Flights 
 
The crack growth curve and RS curves are shown in Figure 31 and Figure 32, respectively. 
 

 

Figure 31. First example: crack growth curve 
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Figure 32. First example: RS curve 

This example problem was solved using the master curve approach.  
 
Figure 33 shows the SFPOF with inspections (red line) and without inspections (blue line) using 
numerical integration and the master curve approach. In Figure 34, the effect of each inspection 
can be observed by the number of detected cracks on each inspection based on the POD 
parameters.  
 

 

Figure 33. First example: SFPOF calculation results 
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Figure 34. First example: percentage of detected cracks at the inspection points 

4.2   EXAMPLE TWO (NASGRO-GENERATED MASTER CURVE) 

The second example is an airplane considered with a single usage (i.e., a single-engine 
unpressurized instructional usage). Table 12 presents the crack growth parameters for a through 
crack in a hole. The random variables included are initial crack size (lognormal distribution) and 
fracture toughness (normal distribution).  

Table 12. Second example: crack growth problem definition 

Quantity Definition 
NASGRO Crack Growth Model TC03 – Through crack in a hole 

Geometric Variables 

Width = 2.5 in. 
Thickness = 0.09 in. 
Hole Diameter = 0.156 in. 
Hole Offset = 0.5 in. 

Fracture Toughness Distribution 
Normal: 
      Mean = 35.0 .ksi in  
      Standard Deviation = 3.0 .ksi in  

Initial Crack Size Distribution 

Lognormal 
      Median = 0.00163 in. 
      Mean = ln(median) = -6.420 
      Standard Deviation = 1.113  

POD 
Lognormal: 
      Mean = xµ  = 0.07 in. 
      Standard Deviation = xσ  = 0.06 in. 

Inspection Times 5000 and 8000 Flights 
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Table 13 presents the loading variables. These variables were used to generate the loading for the 
crack growth analysis. 

Table 13. Second example: loading variables 

Variable Value 
Usage Single Engine Unpressurized Basic Instructional Usage 
Design LLF Maneuver 3.2, -1.32 
Design LLF Gust 3.4, -1.2 
Ground Stress (psi) -2000 
One-g stress (psi)  6500 
Flight Length and Velocity Matrix Deterministic 
Flight Length and Weight Matrix Deterministic 
Average Velocity (VNO/VMO [Knots]) 165 

VMO = maximum operating limit speed; VNO = maximum aircraft safe cruise speed 
 
The EVD was computed using the parameters of Table 13. The results are presented in  
Figure 35. 

 

Figure 35. Second example: EVD 

Figure 36 shows the SFPOF with inspections and without inspections using numerical integration 
and the master curve approach. In Figure 37, the effect of each inspection can be observed by the 
number of detected cracks on each inspection based on the POD parameters.  
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Figure 36. Second example: SFPOF calculation results 

 

Figure 37. Second example: percentage of detected cracks at the inspection points 

4.3  EXAMPLE THREE (KRIGING METAMODELING) 

The third example is a single-engine airplane considered with a single usage (i.e., a single engine 
unpressurized executive usage). Table 14 presents the crack growth parameters for a through crack 
in a hole. The random variables included are initial crack size (lognormal distribution), fracture 
toughness (normal distribution), and loading (Gumbel distribution).  
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Table 14. Third example: crack growth problem definition 

Quantity Definition 
NASGRO Crack Growth Model TC03 – Through crack in a hole 

Geometric Variables 

Width = 2.5 in. 
Thickness = 0.09 in. 
Hole Diameter = 0.10 in. 
Hole Offset = 0.5 in. 

Fracture Toughness Distribution 

Normal: 
      Mean = 34.8 .ksi in  

      Standard Deviation = 3.9 .ksi in  
 

Initial Crack Size Distribution 

Lognormal 
      Median = 0.00163 in. 
      Mean = ln(median) = -6.420 
      Standard Deviation = 1.113  

EVD (Weibull) Location = 5.0, Scale = 10.0, and Shape = 5.0 
Material  Al-2024 

 
Table 15 presents the loading variables. These variables were used to generate the loading for the 
crack growth analysis. 
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Table 15. Third example: aircraft loading variables 

Variable Value 
Usage Single Engine Unpressurized Basic Executive Usage 
Design LLF Maneuver 3.8, -1.52 
Design LLF Gust 3.155, -1.155 
Ground Stress (psi) -4550 
One-g stress (psi)  7100 

Flight Length and Velocity Matrix 

Dur/Vel  0.80 0.85 0.90 0.95 1.00 
0.50: 0.05 0.05 0.10 0.10 0.10 0.65 
0.60: 0.05 0.05 0.05 0.05 0.15 0.70 
0.70: 0.10 0.00 0.05 0.05 0.15 0.75 
0.80: 0.15 0.00 0.05 0.05 0.10 0.80 
0.90: 0.20 0.00 0.00 0.00 0.10 0.90 
1.00: 0.25 0.00 0.00 0.05 0.05 0.90 
1.10: 0.15 0.00 0.00 0.00 0.05 0.95 
1.20: 0.05 0.00 0.00 0.00 0.05 0.95 

Flight Length and Weight Matrix 

Dur/Vel  0.80 0.85 0.90 0.95 1.00 
0.50: 0.05 0.05 0.10 0.10 0.10 0.65 
0.60: 0.05 0.05 0.05 0.05 0.15 0.70 
0.70: 0.10 0.00 0.05 0.05 0.15 0.75 
0.80: 0.15 0.00 0.05 0.05 0.10 0.80 
0.90: 0.20 0.00 0.00 0.00 0.10 0.90 
1.00: 0.25 0.00 0.00 0.05 0.05 0.90 
1.10: 0.15 0.00 0.00 0.00 0.05 0.95 
1.20: 0.05 0.00 0.00 0.00 0.05 0.95 

Average Velocity (VNO/VMO [Knots]) 165 
VMO = maximum operating limit speed; VNO = maximum aircraft safe cruise speed 
 
To calculate the SFPOF, the code was run using 5000 Monte Carlo samples, a surrogate model 
with 10 initial training points, and a user-defined error threshold equal to 5%. 
 
Figure 38 shows the total number of training points (NASGRO evaluations) used as a function of 
the total number of Monte Carlo samples. From the Figure 38, it can be observed that for 5000 
samples and an error threshold equal to 5%, only 98 NASGRO evaluations were needed, which 
truly reduces the computational effort. 
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Figure 38. Third example: surrogate model, number of training points vs. number of  
Monte Carlo evaluations 

Figure 39 shows a comparison between the SFPOF if NASGRO is evaluated 5000 times (exact- 
black line) — running all 5000 evaluations using NASGRO) — and if the surrogate model is used 
(Kriging-red dots). The total time duration for the full NASGRO run was 18 hours. The total time 
duration for the Kriging model was 2.3 hours. This demonstrates the computational efficiency of 
the Kriging metamodeling to perform PDTA. 

 

Figure 39. Third example: SFPOF calculation results 
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5.  CONCLUSIONS 

The probabilistic fatigue evaluation of GA aircraft is vital for providing important insight into the 
severity or criticality of a potential structural issue. For this reason, a probabilistic damage 
tolerance (DT) methodology and computer software were developed for FAA engineers to perform 
risk assessments of structural issues. 

 
The methodology was programmed into a computer code, “SMART|DT,” to quantify the 
probability of structural failure. This information will provide a proactive approach to enable a 
nonbiased review of data to ensure airworthiness. The software considers the random variables: 
loading (gust and maneuver loads, sink rate, flight velocity-duration, flight weight-duration), 
material behavior (fracture toughness, crack growth parameters, yield stress, ultimate stress), 
geometric variables (initial crack size, hole diameter, hole edge distance, aircraft ratio), and 
inspection (repair crack size, POD, probability of inspection). The random variables are used with 
Monte Carlo simulation or numerical integration algorithms to calculate the airplane probability-
of-failure (POF) (SFPOF, cumulative total POF, and hazard function) with and without 
inspections. SMART has a user interface that creates the input file, runs the executable, creates 
input/output plots (histograms, probability density functions, cumulative density functions, scatter 
plots, and 2D line plots), and allows the visualization of the output files. The methodology and 
software were demonstrated on three different DT examples.  
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A-1 

APPENDIX A—LOAD AND STRESS SPECTRUM GENERATION 

A-1. INTRODUCTION 

In 1962, at the request of the FAA, and upon recommendation of the NASA Committee on Aircraft 
Operating Problems, the NASA V-G (velocity, normal acceleration)/VGH (velocity, normal 
acceleration, pressure altitude) GA Program was established [A-1]. This program recorded gust 
and maneuver loads, airspeed practices, and other variables for GA airplanes to provide a database 
of information for use by airplane designers and evaluators. The program recorded more than 
42,155 hours of VGH data from more than 105 airplanes. Tabulated data of the exceedance curves 
can be found in [A-2, A-3]. A probabilistic assessment of exceedance curves can be found in [A-
4]. 

A-2. SPECTRUM GENERATION  

A-2.1, MANEUVER AND GUST LOADS 

The data for maneuver and gust loads are presented as the cumulative number of occurrences per 
nautical mile versus the acceleration fraction (an airplane characteristic defined as the incremental 
normal acceleration divided by the incremental limit factor). Maneuver and gust use the same 
methodology to generate load data, so only the gust load methodology is discussed.  
 
The gust spectra in the exceedance curves is expressed in terms of the gust load factor ratio: 
 

   (A-1) 

 
To develop the gust stress spectrum, a sweep through the exceedance curve of acceleration fraction 
values (figure A-1) is conducted to account for the possible loads that an airplane faces during a 
flight. An example is presented for illustration purposes using only four values (0.10, 0.16, 0.22, 
and 0.28). The values and calculations needed to compute damage due to gust loading are shown 
in table A-1, with the description in the second column.  
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Figure A-1. Exceedance curve for gust 

See Table A-1 for 
Tabulated Spectra 
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Table A-1. Gust damage calculation 

Gust Damage 

1 
From the exceedance curve reading 
the positive values of the gust load 
factor ratio, . 

0.10 0.16 0.22 0.28 

0.16 0.22 0.28 0.34 

2 Calculate the average value from 
the values in Row 1. 0.13 0.19 0.25 0.31 

3 

From figure A-1, read the different 
values of cumulative occurrence of 
gust per nautical mile at a specific 
gust load factor. 

0.57 0.18 0.052 0.013 

4 
 

From the exceedance curve, read 
the negative values of the gust load 
factor ratio corresponding to  
Row 2. 

-0.12 -0.18 -0.25 -0.32 

5 

Frequency per nautical mile (no 
accumulation) is the difference 
between two successive values in 
Row 3.  

0.39 0.128 0.039 0.0087 

6 
Number of gust cycles accumulated 
per hour (Row 5) x 0.9 (Design 
Cruise Speed, Vc). 

57.8 19 5.79 1.292 

7 

Increment in the stress due to the 
gusts. To get this value (delta g), 
multiply Row 2 and Row 4 by  

. 

-0.259 -0.388 -0.539 -0.690 

0.28 0.409 0.539 0.667 

8 

Maximum and minimum delta 
stress over and below the maximum 
stress at the critical component 
(One-g Stress) – multiply Row 7 by 
One-g Stress (7410 psi). 

-1920 -2870 -4000 -5980 

2070 3030 4000 4940 

  
The steps to calculate gust damage are explained more in detail, as follows:  
 
• Positive and negative acceleration fractions and their corresponding cumulative frequency 

of exceedance are read from the exceedance curve. Figure A-1 shows the positive values 
of acceleration fraction (0.1 and 0.16)—see the blue and red lines. Using these values, the 
respective cumulative frequency values are read (0.57 and 0.18), with the corresponding 
negative acceleration fraction at the same cumulative frequency level  
(-0.12 and -0.18). 

• The difference between two successive values of cumulative frequency is used to calculate 
occurrence frequency. Occurrence frequency is the difference between two successive 
values of cumulative frequency. In this case, the difference between 0.57 and 0.18 results 
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in 0.39 occurrences per nautical mile. The number of occurrences per hour is calculated by 
multiplying the cumulative frequency per nautical mile by the aircraft velocity in nautical 
miles per hour. For this example, the velocity was assumed to be 148.2 nautical miles per 
hour (90% of the design velocity), resulting in 57.8 occurrences per hour. 

• The stresses at this occurrence level (57.8) can be calculated by multiplying the 
acceleration fractions involved (0.13, the average between two successive positive values 
of 0.1 and 0.16, and -0.12) by the load limit factor (2.155) to obtain delta g. This delta g 
value is multiplied by the one-g stress value to obtain the maximum and minimum stress 
values. 

A-2.2. LANDING AND REBOUND LOADS 

Using the data presented in [A-2], an average value of 3.0 feet per second was established for the 
sink rate velocity. Reference [A-3] presents the results from landing gear drop test data, shown in 
Figure A-2. With the sink rate velocity information, the load factor (g) can be calculated using 
linear regression as: 
 
   (A-2) 
 
where 0.1877 is the slope and 1.3422 is the intercept. After calculating the load factor, the 
maximum and minimum stresses for landing and rebound are calculated using the following 
equations: 
 

  (A-3) 

   (A-4) 
   (A-5) 
   (A-6) 
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Figure A-2. Landing gear drop test data 0 

A-3. TAXI LOADS 
 
The exceedance curve for taxi is shown in Figure A-3. The damage for taxi is determined in an 
analogous manner to gust loading.  
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Figure A-3. Exceedance curve for taxi 
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A-4. GAG LOADS 

GAG is a cycle, which is defined by the transition from the minimum ground stress to the 
maximum stress during a flight. A schematic for the GAG cycle is presented in Figure A-4. 
 

 

Figure A-4. GAG cycle schematic 

The procedure to calculate the once-per-flight, peak-to-peak GAG cycle is explained as follows: 
 
• Using the gust and maneuver exceedances, determine the max stress per flight vs. the 

number of occurrences (figure A-4).  
• Add the number of occurrences in gust and number of occurrences in maneuver to obtain 

the total number of occurrences at each  (shown as a green line in figure 
A-5). 

• Load the maximum stresses for gust and maneuver, including the corresponding number 
of occurrences per flight calculated from the exceedance curves. 

• Interpolate the max stress to determine the  that occurs at a value of one 
occurrence per flight (shown as an orange line in figure A-5). 

•  is taken from landing, when the minimum stress occurs.  
 
 



 

A-8 

 

Figure A-5. GAG example 

When the entire load pairs for gust, maneuver, taxi, landing and rebound, and GAG have been 
calculated, the complete number of cycles are taken and assembled into a flight (incomplete cycles 
are saved to be added to future flights) for the crack growth calculations. 
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1.0 INTRODUCTION 

The purpose of this document is to provide background information and guidelines to aid in the 
development and specification of input parameters associated with random variables used in the 
probabilistic damage tolerance analysis (PDTA) software developed on the Federal Aviation 
Administration (FAA) research project entitled “Probabilistic Damage Tolerance-Based 
Maintenance Planning for Small Airplanes.”  The work reported herein was conducted by 
Southwest Research Institute® (SwRI®) in San Antonio, TX under subcontract to the University 
of Texas at San Antonio (UTSA) on FAA Contract No. 09-G-016.  The overall project involves 
the development of a comprehensive probabilistic damage tolerance methodology such that FAA 
engineers can advise maintenance planning in support of policy decisions in the General Aviation 
(GA) fleet. 
 
This report is divided into sections that address the different types of random variables (RVs) 
considered in the PDTA software in the following areas: fatigue crack growth modeling (material 
properties), geometry models for calculation of stress intensity factors, initial flaw size models, 
and inspection capability models.  Each section of this report presents background information on 
the models and parameters that are involved, identifies those parameters that are considered as 
random variables, discusses sources of data and/or methods used to characterize the RVs, and 
provides guidelines on how to specify their input for use in the PDTA software.  References are 
provided at the end of each major section. 
 
A key aspect of the probabilistic damage tolerance analysis process is the characterization and 
modeling of the random nature of the aircraft loads.  These concepts are not addressed in this report 
and are documented elsewhere by UTSA in the User’s Manual for the PDTA software.  
 
 
 
 
 
 
 
 
  



 

B-5 

2.0 FATIGUE CRACK GROWTH MODELING 

This section first provides a review of fatigue crack growth (FCG) data and how they are modeled 
using the NASGRO equation [2-1].  This is followed by a discussion of which parameters of the 
NASGRO equation are considered as random variables within the PDTA software.  Guidelines 
and recommendations for input and use of these random variables are then provided.  
 
1.1 FATIGUE CRACK GROWTH RATE MODELING USING THE NASGRO EQUATION 

Fatigue crack growth rate data are generally characterized on log-log plots of growth rate, da/dN 
(in/cycle) versus stress intensity factor range, ΔK (ksi√√in).  It is commonplace to consider FCG 
data to be divided into three regions as shown schematically in Figure 2-1.  Region I is the fatigue 
“threshold” region where cracks propagate very slowly and the data usually exhibit a threshold 
(ΔKth) below which cracks do not propagate.  Region II is the linear or steady-state region where 
the relationship between da/dN and ΔK is linear on a log-log plot.  Region II is also commonly 
referred to as the Paris region after the power law equation [da/dN = C(ΔK)n] that has been used 
to model fatigue crack growth in this region for many years.  Region III is the near instability 
region where rapid unstable crack growth occurs as fracture instability is approached. 
 
Crack growth rate calculations in NASGRO use a relationship called the NASGRO equation given 
by: 
 

 (2.1) 

 
where N is the number of applied fatigue cycles, a is the crack length, R is the stress ratio, ∆K is 
the stress intensity factor range, and Kmax = ΔK/(1-R).  C, n, p, and q are empirically derived 
constants.  The NASGRO equation is a “full-range” crack growth model in that it can represent all 
three crack growth regions as well as account for the dependence of FCG rate on the stress ratio. 
Closure is modeled using the Newman crack opening function, f.  The critical stress intensity factor 
or fracture toughness, Kc, influences behavior in the instability region of the curve and controls 
final failure. For additional detail on the NASGRO equation, the reader is referred to the 
documentation for the NASGRO software [2-1].  
 
To fit the NASGRO equation to fatigue crack growth rate data, one generally needs multiple sets 
of data at different R values.  Fits to the NASGRO equation for many aerospace materials are 
available from within the NASGRO software [2-1].  Figures 2-2 and 2-3 illustrate NASGRO 
equation fits for two common GA aluminum alloys (2024-T3 and 7075-T73511) along with screen 
captures of the corresponding NASGRO material properties display. 
 

1.1.1 Degeneration of the NASGRO Equation into the Paris Equation 

If desired by the user, the NASGRO equation can be simplified to the traditional Paris equation 
[da/dN = C(ΔK)n] by judicious choices of NASGRO equation parameters and options on the 
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material screen in the NASGRO GUI.  In order to accomplish this, set p = q = 0.0 and check the 
box to suppress closure (see the NASGRO GUI screen in Figures 2-3 and 2-4).  These choices 
remove the threshold and instability influences on the NASGRO equation (Regions I and III 
become linear extensions of Region II) and the effect of the load ratio, R, is no longer accounted 
for resulting in a conservative high-R crack growth equation.    
 

 

Figure 2-1  Schematic of Fatigue Crack Growth Behavior Illustrating 
the Three Regions of Fatigue Crack Growth 
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Figure 2-2  NASGRO Equation Fit and Material Screen for 2024-T3 Aluminum Sheet 
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Figure 2-3  NASGRO Equation Fit and Material Screen for 7075-T73511  
Aluminum Extrusion 
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1.2 RANDOM VARIABLES USED IN THE NASGRO EQUATION FOR THE PDTA 
SOFTWARE 

The NASGRO equation contains a number of parameters or material properties as briefly 
described above.  However, it must be recognized that a number of these parameters (f, ΔKth, and 
Kc) are really not single-valued parameters themselves; rather, they represent sub-models in 
NASGRO comprised of their own set(s) of equations with their own parameters to model closure 
behavior, threshold behavior, and toughness, respectively.  Therefore, within the NASGRO 
equation, there are at least fifteen parameters that are used to model fatigue crack growth.  These 
sub-models are described in detail in the NASGRO User’s Manual [2-1].  When the NASGRO 
user selects a material from the NASGRO database of NASGRO equation curve fits, the full set 
of NASGRO equation parameters for that material is specified as shown in Figures 2-2 and 2-3.   
 
Conceivably, all of the parameters contained in the NASGRO equation could be considered as 
random variables; however, for the purposes of the PDTA software this was impractical and also 
unnecessary.  The following parameters and material properties can be considered as random 
variables for the NASGRO analyses performed within the PDTA software: 
 
 Paris constant, C 
 Paris exponent, n 
 Yield stress, Sy 
 Ultimate stress, Su 
 Fracture Toughness, Kc 
 
Therefore, in the PDTA software, all other parameters related to the NASGRO equation are 
considered deterministic (e.g., the exponents p and q as well as those parameters that go into the 
threshold model and the toughness model).  In general, for the use of the PDTA software with the 
full NASGRO option, it is assumed herein that the user would use either the NASGRO database 
of material properties for a given material ID, edit those database properties if he desires, or 
provide his own set of user-defined NASGRO equation parameters.   
 
When using the material properties and equation parameters contained in the NASGRO database, 
it is important to be aware that these data are considered “typical” in the context of MMPDS 
(formerly MIL-HDBK-5) terminology [2-2].  That is, they are average values that have no 
statistical assurance associated with them.  They are not S-basis, B-basis or A-basis values. Usually 
they are the values that have been obtained from the test reports referenced by the NASGRO 
database. 
 
Guidelines and recommendations for input and use of these five random variables are provided 
below in Sections 2.3 to 2.5. 
 
1.3 PARIS PARAMETERS, C AND N   

1.3.1 Sources of Fatigue Crack Growth Data 

The NASGRO database [2-1] contains curve fit parameters to the NASGRO equation for many 
aerospace alloys and therefore is an excellent source of values for these parameters. For a given 
material, in many cases NASGRO contains multiple sets of crack growth data; however, in general 
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there are not enough data sets to compute the standard deviations (or coefficients of variation) for 
these parameters and the NASGRO database does not provide a statistical characterization of C 
and n or any of the other parameters.  The USAF Damage Tolerant Design Handbook [2-9] 
presents mean FCG rate data in both tabular and graphical form for many aerospace structural 
alloys but does not provide fits for C and n.  The MMPDS [2-2] does not contain much FCG data 
and for what it contains, curve fits are not provided. 
 

1.3.2 Characterization of C and n as Random Variables 

It has been well known for many years that fatigue crack growth data can exhibit considerable 
variability [2-3, 4].  Furthermore, log C and n are each normally distributed and a strong negative 
correlation exists between the Paris equation parameters C and n [2-5, 6, 7].  The correlation 
coefficient, ρ, between C and n is commonly assumed to be on the order of -0.9 to -0.99 [2-7, 8].   
 
In the PDTA software, log C and n are treated as correlated normal random variables with required 
inputs being the mean (μ) and standard deviation (σ) along with the correlation coefficient ρ.  In 
the absence of other data, the mean values of C and n can be taken to be the parameters from the 
NASGRO database.  A coefficient of variation (COV = σ/μ) of 0.10 is a reasonable choice to 
assume when specifying the standard deviation for each of these parameters in the absence of test 
data.   
 
Alternatively, as an option, n can be assumed to be deterministic (i.e., a constant slope for the FCG 
curve) and allow all of the variability in da/dN to be modeled by the intercept C.  This would be 
accomplished by setting the standard deviation of n to be zero along with setting the correlation 
coefficient ρ equal to zero.   
 
1.4 YIELD AND ULTIMATE STRENGTH 

The material yield and ultimate strengths are used by NASGRO to compute failure by net section 
yielding [2-1].  The NASGRO database [2-1] contains values of yield and ultimate strength for 
many aerospace alloys.  However, as discussed above, these values should be considered as 
“typical” values.  The MMPDS [2-2] provides allowable strength values on an S-basis, B-basis or 
A-basis, where an S-basis value is a minimum value, a B-basis value is exceeded 90% of the time 
with a 95% confidence and an A-basis value is exceeded 99% of the time with a 95% confidence.   
 

1.4.1 Characterization of Yield and Ultimate Strength as Random Variables 

Generally, yield and ultimate strengths are considered to be normally distributed and the PDTA 
software requests the mean and standard deviation for each.   In the absence of test data or other 
information, a reasonable estimate of the COV for material strengths is 5-10%.  A study performed 
by RAE Farnborough reviewed thousands of material test results and found that the yield strength 
tends to exhibit a larger variation than the ultimate strength, and cast materials tend to exhibit a 
larger variation than wrought materials [2-11].  
 
An estimate of the mean and standard deviation can also be obtained from the MMPDS A- and B-
basis values.  Using Chapter 9 of Ref. 2-2, A- and B-basis allowables are calculated from test data 
according to the following equations: 
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𝐴𝐴 = 𝜇𝜇 − 𝜎𝜎𝑘𝑘99 
𝐵𝐵 = 𝜇𝜇 − 𝜎𝜎𝑘𝑘90 
 
where µ and σ are the sample mean and standard deviation, respectively. Assuming the data is 
normally distributed, k99k99 and k90k90 are one-sided tolerance limit factors for the distribution, 
calculated by: 

𝑘𝑘99 = 2.326 + exp �1.340 − 0.522 ln(𝑛𝑛) +
3.87
𝑛𝑛
� 

𝑘𝑘90 = 1.282 + exp �0.958 − 0.520 ln(𝑛𝑛) +
3.19
𝑛𝑛
� 

 
where n-1 is equal to the degrees of freedom.  Since the degrees of freedom are not reported in the 
MMPDS tables, it is advisable to use n = 30, which is the recommended minimum sample size.  
This would also lead to a more conservative distribution.  Using this value, k99k99 and k90k90 
reduce to 3.062 and 1.776, respectively.  Thus, the A- and B-basis allowable equations become: 
 
𝐴𝐴 = 𝜇𝜇 − 3.062𝜎𝜎 
𝐵𝐵 = 𝜇𝜇 − 1.776𝜎𝜎 
 
Solving this system of equations gives the mean and standard deviation of the normal distribution: 
 
𝜇𝜇 = 2.38𝐵𝐵 − 1.38𝐴𝐴 
𝜎𝜎 = (𝐵𝐵 − 𝐴𝐴)/1.286 
 
As an example of this method, consider the steel alloy AerMet 100, a common material for landing 
gear.  The A- and B-basis allowables for the yield strength are 235 ksi and 247 ksi, respectively.  
Thus, using the above equations, the values for the mean and standard deviation would be 263.57 
and 9.33, respectively. 
 
Note that this method should only be used when no other data or information for the material is 
available. 
 
1.5 FRACTURE TOUGHNESS 

Prediction of failure by fracture requires specification of the material fracture toughness. In 
fracture mechanics, the plain strain fracture toughness (KIc), is the lower limiting toughness for a 
material; however, it is generally much too conservative to implement into a damage tolerance 
analysis.  In actual structures, the thickness dependent fracture toughness (Kc) or effective fracture 
toughness (KIe) are more commonly used to represent the fracture failure criteria.  The thickness 
dependent fracture toughness provides larger toughness values than the plane strain fracture 
toughness because of constraint loss driving up the fracture toughness values.  The NASGRO 
material database [2-1] contains values of KIc and KIe for each material and computes Kc (a function 
of thickness, t) using the following equation: 
 

                                                 (2.2) ( )K K B ec Ic k
Ak

t
t/ = + −1 0

2
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where 

 
 
and Ak and Bk are fit parameters contained in the NASGRO database.  These equations are used 
by NASGRO to calculate a Kc value to substitute into the NASGRO equation (Equation 2.1) for 
all through crack geometries.  For the part-through crack geometries, Kc in Equation 2.1 is set 
equal to a constant value of KIe, taken from the NASGRO material properties files. 
 
If the user wants to conservatively use KIc throughout the analysis, this can be achieved by setting 
Bk equal to zero on the NASGRO material screen (see Figures 2-2 and 2-3) resulting in Kc being 
set equal to KIc in Equation 2.2. 
 

1.5.1 Sources of Fracture Toughness Data 

In addition to the NASGRO material database of curve fits to the NASGRO equation, the 
NASMAT module of NASGRO contains a large database of toughness values for each material 
ID, tabulated as a function of thickness [2-1].  NASMAT also has a handy tool that allows the user 
to select sets of toughness data (e.g., for a specific thickness) and compute the average toughness 
and the corresponding standard deviation. 
 
The USAF Damage Tolerant Design Handbook [2-9] is also a very good source of fracture 
toughness data in that it provides fracture toughness values and standard deviations as a function 
of thickness for many aerospace structural alloys.  Additionally, the MMPDS [2-2] also provides 
plane strain toughness values (min/avg/max) and COVs for different thicknesses. 
 

1.5.2 Characterization of Fracture Toughness as a Random Variable 

Fracture toughness is usually assumed to be characterized by a normal distribution in aircraft risk 
analyses [2-10] and the PDTA software follows this approach requiring the input of a mean and 
standard deviation for the toughness.  Generally, a DTA will only use a single (mean) value for Kc 
and does not consider the variability in toughness.  Therefore, choosing the toughness used in the 
DTA as the mean value for the probabilistic analysis is a good approach.   
 
The COVs for fracture toughness (σ/μ) can vary considerably for aerospace aluminums.  The 
MMPDS shows a range of about 3 to 25 percent depending on the alloy, product form, thickness 
and orientation.  Common choices for the fracture toughness COV used in probabilistic risk 
analyses are usually about 5 to 10 percent.  The analyst should make an effort to investigate the 
references cited herein [2-1, 2 and 9] to obtain data to determine a COV and standard deviation 
appropriate for the component geometry and material being analyzed. 
 
 
 

( )t KIc ys0

2
2 5= . / σ
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3.0 GEOMETRY MODELING 

This section provides a review of geometry parameters used in the stress intensity factor (SIF) 
models contained in the NASGRO software [3-1].  This is followed by a discussion of which 
parameters of the NASGRO SIF models are considered as random variables within the PDTA 
software.  Guidelines and recommendations for input and use of these random variables are then 
provided in the final subsection. 
 
3.1 OVERVIEW OF NASGRO STRESS INTENSITY FACTOR GEOMETRIES AND 

NOMENCLATURE 

The NASGRO software has a large library of SIF solutions (models) that are available to the 
analyst and the reader is referred to the NASGRO manual [3-1] for a detailed description of each.  
These models are named by the type of crack:  TCxx (through cracks), CCxx (corner cracks), and 
SCxx (surface cracks).  Table 3-1 lists the NASGRO SIF models that are currently supported by 
the PDTA software.  Note that this list is a large subset of the overall NASGRO SIF solution 
library.  
 
The nomenclature used by NASGRO to define the geometric parameters of the various stress 
intensity factor models is listed as follows: 
 

• a = crack depth, in the through-thickness, t, direction 
 

• c = crack length, or half crack length, along the surface, in the width, W, direction 
 

• c is used for through-crack lengths 
 

• Crack aspect ratio = a/c 
 

• Width must generally be greater than thickness, W ≥ t 
 

• D = hole diameter, cylinder diameter 
 

• B = hole edge distance (hole center offset); measured from hole center to edge of plate 
 
As an example, Figure 3-1 shows the geometry for a commonly used corner crack at a hole model 
(CC02) illustrating the definition of the geometric parameters.  Sketches like this are provided in 
the NASGRO manual and are displayed in the NASGRO GUI for each SIF model. 
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Table 3-1  NASGRO Stress Intensity Factor Models Supported in the PDTA Software 

 
Crack type Description 

 
TC01 Through crack at center of plate 
TC02 Through crack at edge of plate 
TC03 Through crack at hole (offset) in plate 
TC04 Through crack at hole in lug 
TC05 Through crack(s) at hole in plate with row of holes 
TC08 Through crack (circumferential)in hollow cylinder 
TC11 Through crack (offset) in plate – univariant WF 
TC12 Through crack at edge of plate – univariant WF 
TC13 Through crack(s) at hole (offset) in plate – univariant WF 
TC17 Through crack at edge notch in plate – univariant WF 
TC18 Through crack(s) at (offset) embedded slot or elliptical hole in plate – 

univariant WF 
TC19 Through crack at hole (offset) in plate with broken ligament – univariant 

WF 
TC23 Two unequal through cracks at offset hole 

CC: corner crack 
CC01 Quarter elliptical corner crack in plate 
CC02 Quarter elliptical corner crack at hole (offset) in plate 
CC03 Quarter elliptical corner crack at hole in lug 
CC04 Quarter elliptical corner crack(s) at hole in plate 
CC08 Quarter elliptical corner crack(s) at hole (offset) in plate – univariant WF 
CC09 Quarter elliptical corner crack in plate – bivariant WF 
CC11 Quarter elliptical corner crack in plate – univariant WF 
CC13 Quarter elliptical corner crack at edge notch in plate 
CC14 Quarter elliptical corner crack at (offset) embedded slot or elliptical hole 

in plate 
CC15 Quarter elliptical corner crack at (offset) hole in plate with broken 

ligament 
SC: surface crack 

SC01 Semi-elliptical surface crack in plate 
SC02 Semi-elliptical surface crack in plate – univariant WF 
SC05 Semi-elliptical surface crack (circumferential) in hollow cylinder 
SC07 Semi-elliptical surface crack (circumferential) in solid cylinder 
SC17 Semi-elliptical surface crack (offset) in plate – univariant WF 
SC19 Semi-elliptical surface crack (offset) in plate – bivariant WF 
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Figure 3-4  NASGRO SIF Model for a Quarter-Elliptical Corner Crack 
at an Offset Hole in a Plate (CC02)  

3.2 GEOMETRIC RANDOM VARIABLES USED IN THE PDTA SOFTWARE 

The initial crack size and shape are well known to be perhaps the most significant random variables 
in probabilistic damage tolerance analyses and Section 4.0 of this report is devoted to modeling 
initial crack size distributions.  The other geometric random variables that the PDTA software can 
consider are the hole diameter, D, and the edge distance (or hole offset), B.  See Figure 3-1.  The 
PDTA software requires that the mean and standard deviation for each of these random variables 
be specified, assuming a normal distribution. 
 
3.3 CHARACTERIZATION OF GEOMETRIC RANDOM VARIABLES 

The variability of hole diameters and edge distances within an aircraft structure depend mainly on 
the manufacturing quality of the airframe.  Since fastener holes are drilled with the same tool used 
repetitiously, the COV for the hole diameter is typically very small.  Generally, the nominal hole 
diameter is used as the mean and the standard deviation is dependent on the tolerance values.  Edge 
distance COV can depend on whether the fastener holes were hand-drilled or machine-drilled, 
leading to high and low COVs, respectively.   

A few studies give insight into the uncertainty quantification of geometric random variables.  
Millwater and Wieland [3-2] studied the sensitivity of the probability-of-failure to various PDTA 
random variables and characterized the hole diameter and edge distance variability on a certain 
fastener hole location in the T-38 lower wing skin.  The mean and standard deviation of the hole 
diameter was 0.26 and 4.2E-4 inches, respectively, giving a COV of 0.16 percent.  However, it 
was stated that the measurements of the hole diameter were only accurate to 5E-4 inches; thus, the 
true COV is likely smaller than that which was measured. Fastener holes at this location were hand 
drilled and edge distances had a COV of 2.69 percent. 
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A similar study recorded the edge distance variation of fastener holes on a splice joint which was 
part of a modification for a military aircraft [3-3].  After taking edge distance measurements of 
eight similar locations on 24 aircraft, it was determined that this particular structural detail 
exhibited a COV of 38 percent.  However, this large variation did not seem to have a significant 
effect on the probability-of-failure.  Figure 3-2 shows how a lognormal distribution was fit to the 
data using a histogram of values.   

 

Figure 3-5  Edge Distance Measurements Fit to a Lognormal Distribution [3-3]. 

 

3.4 REFERENCES 

3-1. NASGRO® Fracture Mechanics and Fatigue Crack Growth Analysis Software, Version 
7.0, Southwest Research Institute and NASA Johnson Space Center, November 2012. 

 
3-2. Millwater, H.R., and Wieland, D.H., “Probabilistic Sensitivity-Based Ranking of Damage 

Tolerance Analysis Elements,” Journal of Aircraft, Vol. 47, No.1, pp. 161-171, 2010. 
 
3-3. Domyancic, L.C., et al., “Sensitivity Analysis for Risk Assessment of an Aircraft Fatigue 

Critical Location,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, 
and Materials Conference, Honolulu, HI, 2012 
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4.0 INITIAL FLAW SIZE MODELING 
 

4.1 BACKGROUND 

The PDTA methodology uses results from linear elastic fracture mechanics computations for the 
growth of fatigue cracks in critical structural components.  In contrast to US Air Force damage 
tolerance requirements, the FAA does not specify an initial crack size to be used for these analyses.  
It is the analyst’s responsibility to characterize the state of flaws or cracks at some initial time, 
which is usually at the time of manufacture.   
 
This need to characterize the initial structural condition has led to the development of the concept 
of the equivalent initial flaw size (EIFS) [4-1].  The EIFS is a hypothetical crack, assumed to exist 
in the structure, which characterizes the equivalent effect of the actual flaws in the structural detail.  
As such, if the distribution of equivalent initial flaw sizes was used as initial crack sizes in fracture 
mechanics crack growth analyses, results would predict the crack sizes found in a durability test 
article or destructive teardown inspections. Because of the variable nature of fatigue, there is a 
distribution of crack sizes found during these inspections, such as shown at time t1 in Figure 4-1.  
Using this distribution of crack sizes at time t1, along with the deterministic crack growth curve, 
the distribution of crack sizes at some initial time, to, can be determined as illustrated in Figure 4-
1. 
 

 
 

Figure 4-6  Concept to Determine the Equivalent Initial Flaw Size (EIFS) 

 
Section 4.2 discusses how to obtain EIFS data and reviews some commonly used statistical 
distributions.  An example is also presented to demonstrate how discrete EIFS data and 
corresponding statistical distributions can be approximated from field inspection information.  The 
following Section 4.3 reviews existing EIFS distributions for aircraft materials.  Finally, a 
description of the post-repair flaw size distribution is presented in Section 4.4.  
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4.2 PROCESS TO DETERMINE EIFS DISTRIBUTION FROM INSPECTION DATA 

The ideal method of developing an EIFS distribution is to collect data from an inspection of the 
entire fleet.  This allows for a full characterization of the state of the fleet, whereas a teardown 
inspection will only give a small sample of data. 
 
For each location that is inspected, the detected crack length and flight history are needed.  It is 
very important that non-detections – i.e. inspections that found no cracks – are also included in the 
dataset.  In this way, an EIFS distribution which is grown forward in time will be representative 
of the actual state of the fleet, and not just the cracked locations.  These non-detections should be 
considered suspended data points and can be assigned a “missed” crack size based on either a 
minimum detectable crack size, a POD curve of the inspection method, or engineering judgment. 
 
Once the data set is collected, each point must be translated back to time zero in order to determine 
the equivalent initial flaw size.  This is done in the following manner.  First, the “equivalent” 
current time is found for the data point by interpolation of the current crack size on the 
deterministic crack growth curve.  Second, the actual flight hours of the location is subtracted from 
the equivalent current time.  This will give the crack size at time zero, known as the EIFS.  Note 
that this process can be complicated if the aircraft sees varying usage; the crack growth curve must 
be representative of the actual aircraft usage. 
 
An EIFS distribution can be constructed after this process is completed for the entire data set.  
Common distribution fitting techniques can be used, such as ranking, regression, and maximum 
likelihood estimation.  Ref. 4-3 discusses the process and gives examples.  Also, statistical 
software that specializes in fitting data to distributions is widely available.  Due to the high 
sensitivity of the output to the EIFS distribution, the lognormal and Weibull distribution options 
in the PDTA software should only be used if a close fit can be obtained.  Otherwise, tabular input 
should be used to provide the best representation of data. 
 
Many existing EIFS distributions use the Weibull three-parameter model, where the cumulative 
distribution function F(c) is written as: 

 

𝐹𝐹(𝑐𝑐) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑐𝑐 − 𝑐𝑐0
𝜂𝜂 �

𝛽𝛽
� 

Where: 
 

c =  crack size (inches) 
c0 =  distribution origin (inches) 
η =  scale parameter (inches) 
β =  shape parameter 

 
To fit empirical EIFS data to a Weibull distribution, the CDF function F(c) above is transformed 
to a Weibull scale and the Weibull parameters (c0, η, and β) are determined by a “best fit” linear 
regression process.   
 
As a general observation, EIFS curves that are shifted to the right, especially at higher cumulative 
probability levels, will result in greater probability-of-failure.   
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4.2.1 Example 

As an example of creating an EIFS distribution from inspection data, consider a fleet of 69 aircraft 
with a wing fastener hole fatigue critical location (FCL) under analysis.  Given that each half of 
the wing has one FCL, there are a total of (69 x 2) 138 inspected locations.  For simplicity, assume 
that the crack growth curve can be modeled analytically using an exponential function: 
 
𝐶𝐶(𝑡𝑡) = 0.005 exp (0.000379t) 
 
where C(t) is the crack size as a function of flight hours, and t is the time in flight hours.   The 
crack length at zero flight hours (t = 0) is taken as 0.005 inches.   
 
During a fleet inspection, 71 locations had flaws which were found and recorded, and 67 
locations did not have detected flaws.  Figure 4-2 shows the distribution of 71 flaws found at the 
FCL on a population of 69 inspected aircraft. Flaw sizes were generally not directly measured 
but estimated by the oversize of the reamer needed to remove the flaw indication.  Note the 
vertical steps at 0.015, 0.03 and 0.06 inches in Figure 4-2.  These correspond to oversize values 
of 1/64, 1/32, and 1/16 inch on the radius.  Also noted on this figure are the two large 0.21-inch 
and 0.36-inch flaws found on separate aircraft at 4,619 and 4,519 flight hours, respectively.  
 
These “inspected” flaw sizes were used in conjunction with the given crack growth curve to 
estimate the EIFS.  The analysis assumes that the inspected flaws are sharp fatigue cracks, and 
linear elastic fracture mechanics, as represented by the crack growth curves, can be used to 
backtrack the crack size. 
 
As a specific example of how to backtrack the size of a single crack, assume that a 0.032-inch 
crack was found at the FCL at 6,909 flight hours.  Using the analytical crack growth equation the 
number of flight hours from the ‘initial time’ is calculated as 4,898.  Note that the crack length at 
the ‘initial time’ (i.e., at zero flight hours) is 0.005 inches from the crack growth equation.  
However, the aircraft was inspected at 6,909 hours and has flown 2,011 hours (6,909 – 4,898) 
prior to the ‘initial time.’  Using the analytical crack growth equation at –2,011 flight hours gives 
a crack size of 0.00233 inches.  This is the EIFS for the particular flaw indication found during 
inspection. 
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Figure 4-7  Distribution of Flaw Sizes (Detected Only) at the Example FCL. 

 

Figure 4-8  Process to Determine EIFS from Inspection Data 
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Using the process illustrated in Figure 4-3, two EIFS distributions were created.  The first, called 
“Detected Flaws Only,” uses only the 71 data points of the detected flaws.  The second assumed 
that for the 67 remaining locations, a flaw existed which was below the minimum detectable flaw 
size.  This analysis assumes that each of these holes contains a flaw equal to the size of the 
smallest flaw found (0.005 inch).  This means that flaws are assumed at all holes, either those 71 
flaws detected or the 0.005 inch flaw assumed to exist in the remaining 67 holes.  This should 
give a lower bound to the discrete EIFS distribution using the inspection data.   
 
The two EIFS data sets are plotted in Figure 4-4.  The dataset using only the detected flaws best 
fit a lognormal distribution, while the dataset assuming flaws at all holes best fit a Weibull 
distribution.  These curves collectively show the large difference that can occur when suspended 
data points (non-detections) are included in the EIFS construction.  Also plotted are curves for 
the 2024-T851 [4-2] and 7075-T73 [4-4] distributions for comparison.   
 

 

Figure 4-9  Comparison of EIFS Distributions 
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4.3 EXISTING EIFS DISTRIBUTIONS 

Since the probability-of-failure is highly sensitive to the EIFS distribution, every effort should be 
made to create this distribution from inspection or teardown data that is specific to the structural 
detail under analysis.  However, there are cases where this information does not exist and best 
engineering judgment must be used instead.  The following section lists EIFS distributions that are 
available in the literature and can be used as a guide for EIFS inputs. 
 
In 1996, SwRI conducted a full-scale durability fatigue test followed by a destructive teardown 
inspection as part of an economic life evaluation of the T-38 –29 wing [4-4].  The T-38 wing 
skin material was 7075-T73 plate, and contained both coldworked and non-coldworked fastener 
holes.  The holes were distributed over the lower wing skin and each was subjected to its own 
stress field, had a unique wing skin thickness, and used varying fracture mechanics models.  This 
resulted in 24 separate fracture mechanics analyses that included crack growth retardation.  The 
resulting EIFS distributions are considered conservative since the data set did not include 
suspended data. 
 
In 1999, Lincoln and Melliere published a paper [4-2] addressing the economic life of a military 
aircraft.  That paper presented EIFS distributions, based upon Weibull models, for several 2000 
and 7000 series aluminum and titanium alloys obtained from durability tests conducted by 
McDonnell Aircraft for the USAF F-15E.  
 
Table 4-1 gives the Weibull parameters for the EIFS distributions that were documented in the 
above studies. 
 

Table 4-2  Weibull Parameters for Aluminum and Titanium EIFS Distributions 

 

Material 
Shape  
β 

Scale  
η (inches) 

Location 
c0  (inches) Source 

2024-T851 0.659 0.00106 0.000315 4-2 
7075-T73 (Non-coldworked hole) 0.996 0.0061 0.0 4-4 
7075-T73 (Coldworked hole) 0.939 0.0025 0.0 4-4 
7075-T7352 0.763 0.00016 0.00024 4-2 
7075-T76 1.519 0.00189 0.0 4-2 
7175-T7452 1.056 0.00130 0.00071 4-2 
Ti-6Al-4V 1.434 0.00279 0.00012 4-2 
Ti-6Al-6V-2Sn 0.730 7.87E-5 3.94E-5 4-2 

 
For 4340 steel, test results from Purdue University [4-5] were used as a basis for assuming an 
initial crack size distribution.  That research developed a three-parameter (shifted) lognormal fit 
based on “crack forming inclusion” measurements obtained from 4340 SENT specimen fracture 
surfaces.  This distribution is plotted in Figure 4-5 as a function of crack length. 
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The distribution reported in [4-5] is a function of area. Due to the exclusion of crack forming 
inclusions below a threshold size, a shifted lognormal distribution was used, whose cumulative 
distribution function, f(X), is given by 
 

f(X)=Φ�
ln(X-τ) -µ

σ � 

 
 
where 
 

X =  crack inclusion area, (in2) 
µ =  scale parameter, -16.8422 (ln(in2)) 
σ =  shape parameter, 1.0658 
τ =  threshold parameter, 3.9541E-8 (in2) 

 
To obtain an EIFS distribution from the inclusion area distribution, the corresponding crack sizes 
were extracted from the areas by assuming a semi-circular crack.  This transformation is given by 

X=
πc2

2
 

 
The total length of the crack is equal to 2c and corresponds to the x-axis of Figure 4-5. 
  

 
Figure 4-10  EIFS Distribution for 4340 Steel 
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4.4 POST-INSPECTION AND POST-REPAIR INITIAL FLAW SIZE DISTRIBUTION 
MODELING 

The repair crack size distribution models the cracks present in a location after a repair has been 
performed.  Very rarely does sufficient data exist to properly model this variable.  Analytical 
models (e.g. lognormal, Weibull) for this distribution are the same as those used for the EIFS 
distribution; however, the parameters may be different depending on the type of repair.  For 
instance, if a repair consists of replacing a used part with one of equivalent initial quality, then the 
same EIFS distribution can be used as the repair crack size distribution.  
 
Alternatively, a repair may consist of slight modification to the original structure, such as 
oversizing a fastener hole.  In these types of repairs, a location with a crack indication is modified 
until the NDI method no longer detects a crack.  However, cracks may still exist in the structure 
which are smaller than the detection size threshold.  Thus, engineering judgment should be used 
to make assumptions of crack sizes by taking into account the type of repair and the minimum 
detectable flaw size of the NDI method.  The repair crack sizes generally will be much smaller 
than the cracks that are detected during an inspection cycle and will not affect the failure 
probabilities until multiple inspection cycles have been completed. 
 
4.5 REFERENCES 

4-1. “Durability Methods Development,” AFFDL-TR-79-3118, Volumes I-IX, Air Force Flight 
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4-2. Lincoln, J.W., and Melliere, R.A., “Economic Life Determination for a Military Aircraft,” 
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4-3. Abernathy, R.B., The New Weibull Handbook, Fourth Edition, published by Dr. R.B. 
Abernathy, 536 Oyster Road, North Palm Beach, Florida, 33408, February 2005. 

 
4-4. Burnside, H., Wang, W. and Dubke, J., “Economic Life Evaluation of the T-38 –29 Wing,” 

Proceedings of the 1996 USAF Aircraft Structural Integrity Program Conference, San 
Antonio, Texas, December 1996. 

 
4-5. Sharpe, P.S., Hillberry, B.M., and Craig, B.A., “Fatigue Life Variability Prediction Based 

on Crack Forming Inclusions in a High Strength Alloy Steel,” ASTM STP 1450, 
Probabilistic Aspects of Life Prediction, W.S. Johnson and B.M. Hillberry, Eds., ASTM 
International, West Conshohocken, PA, 2004. 
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5.0  INSPECTION CAPABILITY MODELING 

5.1 ANALYTICAL MODELS FOR POD CURVES 

Inspection capability in the PDTA software is modeled using a probability of detection (POD) 
curve as a function of crack size.  However, there are limited sources of POD data since the number 
of tests required to obtain a full POD curve is very large.  As an alternative, the capability of an 
inspection system can also be quantified (albeit to a lesser extent) by defining the crack length for 
which the probability of detection is 0.9.  This crack length is known as a90. 
 
For a lognormal distribution, the parameters that define the POD curve are the median detectable 
crack size, a50= µ, and the POD standard deviation, defined in this report as σ.  If only the a90 value 
is available rather than a full POD curve, engineering judgment can be used to determine a standard 
deviation, σ.  A larger σ implies a “flatter” POD curve, meaning lower detectability at larger crack 
sizes.  The following relation can be used to determine µ from a90 [5-1]: 
 
𝜇𝜇 =

𝑎𝑎90
exp (1.282𝜎𝜎)

 

 
Fully automated eddy current inspection systems conducted with the part removed from the aircraft 
can have σ values in the range of 0.2 to 0.7, depending on the material and geometry of the parts 
[5-2].  Less controlled inspections using manual or semi-automated eddy current can have σ values 
greater than 1.0 [5-3, 5-4]. 
 
5.2 SOURCES OF POD DATA 

An effort should be made to define a POD curve or a90 value that is specific to the structural detail 
under analysis.  If this is not possible, there is a short list of documents that are available to use as 
a reference for NDI capabilities. US Air Force Structures Bulletin EN-SB-08-012 [5-5] defines the 
recommended nondestructive inspection (NDI) capability flaw sizes (aNDI) that should be assumed 
when computing the re-inspection intervals for structures managed by the Air Force Aircraft 
Structural Integrity Program (ASIP) when no other supporting data is available.  Both a90 and a90/95, 
the 90 percent detectable crack length with 95 percent confidence, values are given for aluminum, 
steel, and titanium for various inspection methods. 
 
The Nondestructive Evaluation (NDE) Capabilities Data Book [5-4] contains 423 POD curves 
from tests using different inspection methods, materials, and geometries. Also available are 
standard NDE capability flaw sizes used for NASA applications. However, it is emphasized that 
this data is for reference only and that POD curves should be developed for critical parts under 
analysis. 
 
5.3 REFERENCES 

5-1. Smith, F.R., et al., “PROF v3.1 Probability-of-failure User’s Manual,” UDR-TR-2011-15, 
University of Dayton Research Institute, Dayton, OH, February 2011. 
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5-2. Berens, A.P., “Analysis of the RFC/NDE System Performance Evaluation Experiments,” 
Review of Progress in Quantitative Nondestructive Evaluation 6A, Edited by Donald O. 
Thompson and Dale E. Chimenti, Plenum Press, New York, 1987. 

 
5-3. Lewis, D.P., et al., “Reliability of Nondestructive Inspection – Final Report,” SA-

ALC/MME 76-6-38-1, San Antonio Air Logistics Center, Kelly Air Force Base, TX, 
December 1978. 

 
5-4. Rummel, W.D., and Matzkanin, G.A., Nondestructive Evaluation (NDE) Capabilities Data 

Book, 3rd Ed., NTIAC:DB-97-02, November 1997. 
 

5-5. EN-SB-08-012, Rev. C, “In-Service Inspection Flaw Assumptions for Metallic 
Structures,” US Air Force Structures Bulletin, AFLCMC/EZ, May 2013. 
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6.0 CONCLUSIONS 

The purpose of this document was to provide background information and guidelines to aid in the 
development and specification of input parameters associated with random variables used in the 
probabilistic damage tolerance analysis (PDTA) software developed to assist the FAA in 
maintenance planning for small airplanes. 
 
Section 2.0 of this report provided background on the NASGRO equation for fatigue crack growth 
and guidelines regarding choices for parameters that are considered as random variables in the 
NASGRO equation.  It is noted, however, that the PDTA software has options other than the 
NASGRO equation (i.e., the master curve approach) that also use some of these parameters, in 
particular, yield strength and fracture toughness.  In these cases the discussions in Section 2.4 and 
2.5 would also apply to this alternate approach. 
 
In Section 3.0, examples were provided on how to obtain data to categorize the variability of select 
geometry parameters (hole diameter, edge distance) that would be used in the stress intensity factor 
model of a fatigue critical location.  The variability of these types of data can be aircraft dependent 
and depend on the initial manufacturing process, quality and vintage of the airframe.   If repairs 
and/or modifications were performed at a given fatigue critical location, the variability may be 
significant, particularly if different repair shops were used across the fleet.  Therefore, if the analyst 
is concerned with how differences in geometry may affect life and risk, there really is no substitute 
for obtaining a sample of measurements of these quantities from the fleet.  In the absence of such 
data, the analyst should perform a sensitivity study on his geometry modeling assumptions to 
determine if they have a significant effect on life and risk.  In many cases, the influence of these 
parameters is minor when compared to other factors such as material properties and equivalent 
initial flaw size. 
 
The use of the equivalent initial flaw size (EIFS) distribution to characterize the initial condition 
of a fatigue critical location was reviewed in Section 4.0.   While the EIFS distribution is often the 
most influential random variable in a probabilistic DTA (with the possible exception of the 
loadings), it should be realized that it is not based on a measurement of initial material quality; 
rather, it is based on extrapolated values of crack sizes which when grown forward produce crack 
sizes consistent with those observed in fatigue tests and/or actual aircraft structure.  Therefore, 
EIFS distributions cannot in general be considered a material property and it must be recognized 
that the EIFS distribution parameters listed in the Section 4.0 examples were obtained for specific 
materials, geometries and aircraft usage (spectra).  Ideally, fleet inspection and/or teardown data 
for a specific aircraft and usage should be used in the determination of the EIFS distribution at a 
given fatigue critical location.  The EIFS distribution parameters listed in Section 4.0 provide an 
illustration of typical values based on data in the literature and previous SwRI research experience; 
they were not obtained for general aviation aircraft.  Therefore, their use in general aviation 
probabilistic DTAs is problematic and the analyst must recognize that they may not be 
representative of general aviation materials and usages. 
 
Inspection capability in probabilistic DTAs is usually modeled with a POD curve and ideally this 
curve would be developed specifically for each structural detail and NDI method; however, in 
practice many times all that is available is the crack length that is detectable 90 percent of the time.  
Section 5.0 discusses approaches to develop a lognormal POD curve; however, considerable 
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engineering judgment may be involved and consultation with NDI experts familiar with the 
methods being used and the locations being inspected may be warranted in order to develop a 
credible POD curve for use in a probabilistic DTA. 
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APPENDIX C—DEVELOPMENT OF NASGRO® ALTERNATIVE INTERFACE FOR 
PROBABILISTIC DAMAGE TOLERANCE ANALYSIS 

C-1.  INTRODUCTION 
 
The purpose of this document is to provide detailed information on an alternative input interface 
developed for the NASGRO software that facilitates the large number of repetitive crack growth 
calculations required by the probabilistic damage tolerance analysis (PDTA) software developed 
as part of the FAA research project entitled “Probabilistic Damage Tolerance-Based Maintenance 
Planning for Small Airplanes.” It is presumed that the readers of this report are familiar with the 
use of both NASGRO and PDTA software. 
 
The work reported herein was conducted by Southwest Research Institute® (SwRI®) in San 
Antonio, TX, under subcontract to the University of Texas at San Antonio (UTSA) as part of FAA 
Contract No. 09-G-016. The overall project involves the development of a comprehensive 
probabilistic damage tolerance methodology, such that FAA engineers can advise maintenance 
planning in support of policy decisions in the general aviation fleet. 
 
C-2. SUMMARY 
 
An alternative interface for NASGRO has been developed to facilitate the large amount of 
repetitive NASGRO fatigue crack growth (FCG) analyses demanded by PDTA applications. With 
this approach, more than 400 application program interface (API) functions were developed in 
support of this new interface. Separate driver routines, specifically for PDTA, were implemented 
to use one template file to define the analysis problem and one sample file to obtain parameterized 
variables from randomization. 
 
A software package is supplied on a CD along with this report. The package contains software 
routines and binary executable code developed specifically for the PDTA applications. The listing 
of the routines contained on the CD can be found in appendix A. Bearing in mind that the 
NASGRO core application is distributed in terms of a binary library format, a procedure for 
constructing the NASGRO workspace, as described in appendix B, is provided to the user in the 
event of a need to rebuild the NASGRO application. The software driver is derived from the driver 
routines for PDTA, whose content can be identified in the included text-formatted driver routines. 
Additional “dummy” routines are provided in case modifications to the driver routines, resulting 
in a rebuild, are needed. 
 
For future development, it is suggested that the output capability based on this new alternative 
interface be enhanced. With such a new effort, a new compact and more structured format for the 
output database will need to be defined and a separate set of output API functions implemented. 
This would eliminate the computation lag as a result of writing output inside NASGRO and lead 
to more effective control over the output functionality through API function calls. 
 
C-3. INTERFACE DEVELOPMENT PROCESS 
 
With the development of an alternative interface for NASGRO to facilitate the UTSA/FAA PDTA 
applications, driver routines and internal NASGRO restructuring were required. The restructuring 
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established a clean interface, enabling the user to use NASGRO as an individual software module. 
It also provides an alternative interface, in addition to the conventional one, tightly associated with 
the released NASGRO GUI that generates text-based batch files required by the conventional 
NASGRO interface. The NASGRO program containing the new alternative interface is generated 
based on a separate set of compiler macro directives. The objective of this new interfacial approach 
is to facilitate the computational effort to perform large amounts of repetitive NASGRO analyses 
demanded by PDTA applications. The approach replaces the traditional NASGRO batch file-based 
data passing mechanism with a more efficient approach: API function calls. The advantage 
becomes obvious when considering the time-consuming and error-prone shortcomings involved 
with generating text-based batch files. 
 
Using this new approach, the input process for the analysis problem is conducted at the very 
beginning inside the driver routines by scanning through the template file. This step defines the 
basic required parameters such as those grouped by GUI tabs for geometry, material, loading, 
schedule, and output options. Next, a loop of repetitive processes—consisting of scanning each 
parameterized set of randomized variables in the sample file, replacing template values by 
parameterized values, and conducting NASGRO FCG analysis—is performed up to completion. 
The scanning and updating is done in the driver routines and the updated numerical data by 
parameterized values are passed through the alternative interface to NASGRO libraries.  
 
As evident in the data-passing mechanism described above, the program structure can be roughly 
described into two classes. One class is the driver, the other is the main core of the NASGRO 
program. The driver is an executable generated from the driver routines. Its main function is to 
drive repetitive NASGRO FCG computations while obtaining a new set of parameterized 
variables. The NASGRO main core is distributed by SwRI as binary dynamically linked libraries 
(whose file extension is .dll). The libraries are provided on the CD and is delivered to the FAA 
with this report. Respectively, they are “nasgro_context.dll” and “nasgro_dll.dll.” Note that they 
are accessible only within the Microsoft® Windows® environment. 
 
The crack cases (stress intensity factor models) applicable for parametric computations in this 
specific version of NASGRO are listed in table C-1. This list has three new crack models—CC17, 
SC30, and SC31—in addition to those in the previous version provided to UTSA. As can be seen, 
almost all the important crack models in NASGRO for aircraft damage tolerance analyses are 
contained in this list. Both SC30 and SC31 are to replace SC17 and SC19, and CC17 has the new 
capability to compute stress intensity factors for two dissimilar corner cracks at a hole. 
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Table C-1 Applicable NASGRO crack models* for parameterized computation 
 

CC  
(corner crack 

 model) 
 

TC 
(through-thickness crack 

model) 

SC 
(surface crack  

model) 

CC01 
CC02 
CC03 
CC04 
CC08 
CC09 
CC11 
CC13 
CC14 
CC15 
CC16 
CC17 

TC01 
TC02 
TC03 
TC04 
TC05 
TC08 
TC11 
TC12 
TC13 
TC17 
TC18 
TC19 
TC23 

 

SC01 
SC02 
SC05 
SC07 
SC17 
SC19 
SC30 
SC31 

 

* Refer to the NASGRO user’s manual for a detailed description of each model. 
 
C-4. EXECUTION OF INTERFACE 
 
Interactive execution of the program is straightforward. To start with, the program can be launched 
either in command prompt or in Microsoft Windows. Once the program is launched, three 
consecutive questions will be asked. For illustration, an interactive session is provided to outline 
these steps: 
 
Step 1: Start the analysis either by double clicking on the program icon or by providing the program 
name in a new interactive session using the command prompt. For example, the following single 
command line shows how to provide the program name right after the system prompt to start the 
analysis. The program name is the same as the NASGRO program with this document: 
 
dosSystemPrompt > nasgro_using_api 
 
Step 2: Specify the analysis type after the on-screen prompt by the program. For PDTA, this should 
be for multiple analyses (two) that require a sample file. 
 
1. Single (no sampling file) analysis 
2. Multiple (using sampling file) analyses 
 
 
 
 
Step 3: Provide the name of the master file or the template file after the on-screen prompt by the 
program. 
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What is the master file? 
Cc01_tst1.flabat 
 
Step 4: Provide the name of the sample file after the on-screen prompt by the program. 
 
What is the file containing randomized variables? 
Cc01_tst1.sample 
 
Once the above information is provided, the program will start the parameterized computation. 
Each parameterized run designated in the sample file will have its own result file group in 
connection with the root name given by the template file. The root name is the name of the template 
file without the extension. The results of parameterized runs will be associated with file groups 
having indices corresponding to the IDs in the sample file. For example, the root name of the 
template file “cc01_tst1.flabat” is “cc01_tst1”, and the parameterized analysis will generate groups 
of result files of which file names are expressed in terms of the following root names:  
 
“cc01_tst1-r1,” “cc01_tst1-r2,” …, etc. 
 
The interface is current with and compatible with NASGRO version v7.1. This application can be 
invoked as described previously.  
 
C-5. FUTURE DEVELOPMENT 

 
Current API functions support only the construction of the input database. A separate set of API 
functions would need to be generated to support the output database, such that a streamlined 
approach solely through API functions can be established. This would require a new definition of 
the data structure (in contrast to current NASGRO OUT2 file text format) consisting of all output 
variables, such that the integrity of the output can be retained in a compact structured binary format 
for quick access by the user through output API function calls. 
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APPENDIX D—SIGNIFICANCE OF INCLUDING MISSED-DETECTIONS IN 
STRUCTURAL RELIABILITY UPDATING 
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1.0 EXECUTIVE SUMMARY 

This investigation is the continuation of an FAATC research effort, which aimed at managing 
aircraft structural reliability by using damage tolerance (DT) methodology combined with 
nondestructive inspections. The effort was largely in response to the DT requirements in FAR 
29.571, Fatigue Evaluation of Rotorcraft Structures (Rotorcraft Working Group Report, 1999; 
2001), which were based on the recommendations by the Technical Oversight Group for Aging 
Aircraft. 
 
The DT methodology accepts the possible existence of initial flaws in structures and incorporates 
inspection and subsequent risk mitigation strategies to sustain structural reliability and safety.  In 
the last decade, the above research effort has been focusing on two major areas: the advancement 
of the reliability-based damage tolerance (RBDT) methodology, and the addressing of the lack-of-
data issue to build credible probabilistic distributions for DT analysis.   It has resulted in the 
development of a highly efficient computational methodology for estimating reliability with or 
without inspections as well as the development and demonstration of a reliability-based 
maintenance optimization (RBMO) methodology (Ref. 1).     
 
To address the lack-of-data issue, another research was conducted recently to target the 
characterization of the initial flaw size (IFS) distribution, which had been widely recognized as an 
important random parameter in the DT methodology.  Applying the Bayes’ theorem to update IFS 
using inspection data is a well-used approach to address the data issue.   However, in the 
application of the Bayes’ theorem, it normally requires a substantial amount of inspection data to 
create the likelihood function. 
 
In order to remove the constraint, a model-based methodology which employs DT model and the 
probability of detection (POD) function to create likelihood functions was developed recently (Ref. 
2).  It proposed that the DT model could provide a foundation to build a Bayesian updating 
framework capable of incorporating inspection results from multiple locations and points of time.  
Built on this framework, a tailored computational method was subsequently developed to compute 
the likelihood functions and update the IFS efficiently.   The two approaches have been integrated 
and tested by selected fracture mechanics examples.  The result was encouragingly promising.    
 
However, the above research did not fully address the situations when inspections miss either the 
hard-to-detect small flaws or the larger ones with a slim, but non-zero, probability to be detected.  
Because non-detections suggest negligible risks, it is possible that such inspection records may be 
overlooked when conducting Bayesian updating.  Subsequently the updated IFS would reflect only 
the larger defects.  The result could become overly conservative, especially when there are 
numerous misses.  It is essential to investigate the importance of including the missed detections - 
the objective of the current project. 
 
This report presents a DT-based Bayesian updating framework which includes both the detected 
and the missed detections.  To demonstrate the methodology, a tailored sampling-based approach 
has been developed to compute likelihood functions for all the inspection results.  Using a DT 
example, the result suggests that (1) a good POD with sizing information have a useful dominating 
effect for updating, (2) the non-detection results from a bad POD can provide misleading evidence 
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and should not be used for Bayesian updating, (3) when the inspection POD is reasonably effective, 
the inclusion of the count of non-detections can provide useful information for Bayesian updating.   
 
In summary, this study shows that, with a reasonably effective POD, recording and utilizing 
complete inspection results, i.e., including non-detections, can be important and beneficial for 
aircraft reliability and risk management, including RBMO applications.  The study also suggests 
that future research should investigate the effect of uncertainty in POD model, because of the 
important role POD played in DT and also the fact that POD can be highly uncertain. 



 

D-4 

2.0 INTRODUCTION 

This study is the continuation of an FAATC research effort, which aimed at managing aircraft 
structural reliability by using damage tolerance (DT) methodology combined with nondestructive 
inspections. The effort was largely in response to the DT requirements in FAR 29.571, Fatigue 
Evaluation of Rotorcraft Structures (Rotorcraft Working Group Report, 1999; 2001), which were 
based on the recommendations by the Technical Oversight Group for Aging Aircraft. 
 
The DT methodology accepts the possible existence of initial flaws in structures and incorporates 
inspection and subsequent risk mitigation strategies to sustain structural reliability and safety.  In 
the last decade, the above research effort has been focusing on two major areas: the advancement 
of the reliability-based damage tolerance (RBDT) methodology, and the addressing of the lack-of-
data issue to build credible probabilistic distributions for DT analysis.   It has resulted in the 
development of a highly efficient RBDT computational methodology for predicting reliability with 
or without inspections.  The RBDT methodology covers a wide range of uncertainties including 
the following: 
  
• Random or uncertain parameters in material (e.g., threshold of the stress intensity factor, 

modulus of elasticity) 
• Defect or flaw parameters (including size, shape, and location, and the frequency of 

occurrence) 
• Loading, type of usage (with frequency of occurrence) 
• Finite element model (including modeling error) 
• Crack growth model (including modeling error) 
• Maintenance (including inspection schedules, frequency of inspections, probability of 

detection curves, repair/replacement methods and effect 
 

In order to realize the full values of the DT approach, the RBDT methodology was extended for 
reliability-based maintenance optimization (Refs. 1, 4).  The RBMO methodology was built on an 
efficient and robust random simulation framework which featured three integrated efficient 
methods: (1) a meta-modeling approach to create fast-running DT model, (2) a stratified 
importance sampling method for computing reliability and generate failure-conditioned random 
realizations, and (3) a recursive probability integration (RPI) method for computing reliability with 
inspections and repairs (Ref. 3). 
 
The remaining issues for DT applications center on the modeling of the following uncertainties: 

 
• Probabilistic characterizations of initial flaw sizes (IFS),  probability of detection (POD), and 

other significant uncertainties in the DT models 
• Other uncertainties associated with maintenance effects, such as the quality of the repaired 

parts 
 
The uncertainty modeling issues remain challenging because the needed data could be costly to 
obtain.  It is even more so in the case of the IFS since all the NDI devices have limitations in 
detecting very small IFS.   One solution is to measure flaws at a later time, such as from a tear-
down inspection, and apply fracture mechanics crack growth models to back-extrapolate the defect 
sizes. The resulting IFS is commonly called Equivalent Initial Flaw Size (EIFS).  However, since 
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the EIFS is derived under certain specific conditions, its use is limited to structural geometries and 
loading conditions.  And because the material properties related to crack growth are random, the 
back-extrapolate process itself is imprecise.  In actuality, the EIFS should be regarded as a rough 
approximation of the true IFS. 
 
To address the lack-of-data issue, another research was conducted recently to target the 
characterization of the IFS distribution, which had been widely recognized as an important random 
parameter in the DT methodology.  Applying the Bayes’ theorem to update IFS using inspection 
data is a well-used approach to address the data issue.   However, in the application of the Bayes’ 
theorem, it normally requires a substantial amount of inspection data to create the likelihood 
function. 
 
In order to remove the constraint, a model-based methodology which employs DT model and the 
probability of detection (POD) function to create likelihood functions was developed recently (Ref. 
2).  It proposed the use of the DT model to build a Bayesian updating framework capable of 
incorporating inspection results from multiple locations and points of time.  Built on this 
framework, one tailored computational method was subsequently developed to compute the 
likelihood functions and update the IFS efficiently.   The two approaches have been integrated and 
tested by selected fracture mechanics examples.  The result was encouragingly promising.    
 
However, the above research did not fully address the situations when inspections miss either the 
hard-to-detect small flaws or the larger ones with a slim, but non-zero, probability to be detected.  
Because non-detections suggest negligible risks, it is possible that such inspection records may be 
overlooked when conducting Bayesian updating.  Subsequently the updated IFS would reflect only 
the larger defects.  The result could become overly conservative, especially when there are 
numerous misses.  It is essential to investigate the importance of including the missed detections - 
the objective of the current project. 
 
In the proposed methodology, the POD plays an important role in modeling the likelihood 
function.  In general, the parameters in a POD model should be treated as random variables that 
should be updated.  To simplify the investigation and focus on the main objective, a range of 
deterministic POD curves are assumed in this study.   
 
In the long history of the application of the Bayes’ theorem for fracture mechanics (e.g., Ref 5), 
the likelihood functions has mostly been based on data.  While the formulation to include a time-
dependent likelihood function existed (e.g., Ref. 6), no implementation was available because of 
the difficulty in computing the likelihood functions.  Most recently, the limit-state reliability 
method and the response surface approach was proposed to compute the crack size PDF and the 
likelihood function (Ref. 2). However, it has been found that that the method is not sufficiently 
robust or efficient. 
 
This report presents a DT-based Bayesian updating framework which includes a complete 
formulation of the likelihood functions for both the detected and the missed detections.  The report 
also includes an improved sampling-based method to replace the limit-state reliability approach 
for computing the crack size PDF and the likelihood function.   Most importantly, the report applies 
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the method to investigate the significance of incorporating the number of non-detections.  A 
representative fracture mechanics example is selected for the investigation.   
 
3.0  METHODOLOGY 

Based on the Bayes’ theorem, the prior PDF distribution of a set of random variables θ , denoted as ( )q θ− , is 
updated to a posterior PDF, ( )q θ+ , by using: 

 

( | ) ( | ) ( )D Dq a C L a qθ θ θ+ −= ⋅ ⋅                                                   (1) 
 
in which aD represents detected crack sizes,  ( | )DL a θ  a likelihood function, and C is a normalization factor 

defined as:  
 

1
( | ) ( )D

C
L a q dθ θ θ−

=
⋅⋅ ⋅ ⋅∫ ∫

                                                       (2) 

 
For damage tolerance applications, the variables θ  include multiple statistical parameters (e.g., mean, standard 

deviations) of initial flaw size, POD, applied load, and other DT modeling parameters.    
 

Due to technology limitations or human errors, NDI devices may or may not be able to detect all 
defects.   To include all the inspection results, the likelihood function can be modeled as a 
product of “detected” and “missed” likelihood functions (Ref. 7): 
 

( ) ( ) ( )D ML L Lθ θ θ= ⋅                                                           (3) 
 
In general, inspection devices may provide flaw indications with or without crack size 
measurements.  For simplicity, but without losing generality, this study assumes that sizing 
errors can be neglected.  A study of the measurement uncertainty is not within the scope of the 
current study, but can be treated by introducing additional θ -variables to model measurement 
errors. 
 
Given a detected crack of size 

jDa at location j, at time of inspection time, ti , the likelihood 

function can be formulated as: 
 

( ) ( ( ) | )

          ( ( )) ( ( ) | )
j i j

j j

D D D i

D i a D i

L f a t

POD a t f a t

θ θ

θ

=

=
                                             (4) 

 
When the crack sizing data is not available, the unknown crack size cab be treated as a random 
variable and the likelihood function can be formulated by integrating equation 4 over all the 
possible crack sizes, i.e.,  

 
( ) ( ( )) ( ( ) | )

jD i a iL POD a t f a t daθ θ= ⋅∫                                            (5) 
 
which can be simplified by using the expectation function E[.] as:  
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( ) ( ) [ ( ( )) | ]

jD All iPODL E POD a tθ θ θ= =                                           (6) 
 
Equation 6 suggests that the likelihood function can be estimated by taking a sample average 
using samples from the distribution of ( ( ) | )a if a t θ , which can be analyzed using a DT model. 
 
Similarly, when there is no indication of a crack, the PDF of the missed flaw can be assumed to 
be proportional to the PDF of the grown crack at ti and the probability of non-detection (PND), 
and the likelihood function of missing the detection can be formulated by integrating over all the 
possible crack sizes, i.e.,  
 

( ) ( ( )) ( ( ) | )
kM i a iL PND a t f a t daθ θ= ⋅∫                                           (7) 

 
which can be expressed as:  
 

( ) ( ) [ ( ( )) | ]
kM All iPNDL E PND a tθ θ θ= =                                         (8) 

 
which can be estimated by taking a sample average using samples from the distribution of 

( ( ) | )a if a t θ . 
 
Assume that there are I inspections at 1 2{ , ,.., }Insp It t t t= , and that for each ti there are iN  
inspected locations  with  positive indications and 

iMN misses, i.e., 
 

( ) ( ) ( )
i ii i D i M iN t N t N t= +                                                       (9) 

 
The combined likelihood function for the cumulative inspection results, from multiple locations 
and points of time, can be summarized as:  
 

1 11
( ) ( ) ( )

D Mi i

j kD M
j k

I

i

N N
L L Lθ θ θ

= ==

  =  
  

⋅∏ ∏∏                                            (10) 

 
 

WITH CRACK SIZE MEASUREMENTS 

If NDI can provide sizing measurements, the likelihood function can be expressed as, by 
substituting equations 4 and 8 into equation 10, 
 

 
1 11

( ( )) ( ( ) | ) [ ( ( )) | ]( )
j j

D Mi iN N

i a i iD D
j k

I

i
POD a t f a t E PND a tL θ θθ

= ==

        ⋅         
⋅= ∏ ∏∏                    (11) 

 

iDN
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in which the indices j and k are associated with inspection locations for an inspection time ti.  In 
equation 11, ( ( ))

jD iPOD a t∏  is independent of , and can be taken out of the group of products 
and treated as part of the normalization constant in equation 2.  However, in general, POD can 
include additional θ  variables to model POD uncertainty.  When a DT problem involves a single 
inspection location, which will be assumed in the example presented below, [ ( ( ) )]|iE PND a t θ  is 
the same for k = 1 to Mi

N .  For this special case, the likelihood function can be abbreviated as: 
 

( )
11

( ) ( ( ) | ) [ ( ( )) | ]
j

Di
Mi

N
N

a i iD
j

I

i
L f a t E PND a tθ θ θ

==

         
= ⋅∏∏                            (12) 

 
 
WITHOUT CRACK SIZE MEASUREMENTS 

For the cases when flaws are detected but without sizing information, the likelihood function is: 
 

1 11
( ) [ ( ( ) | )] [ ( ( ) | )]  

D Mi iN N

i i
j k

I

i
L E POD a t E PND a tθ θ θ

= ==

  
 
  

= ⋅∏ ∏∏                          (13) 

 
When a DT problem involves a single inspection location, [ ( ( ) | )]iE POD a t θ  is the same for j = 1 
to Di

N .   For this special case, equation 13 can be abbreviated as: 
 

( ) ( )
1

( ) ( ) | ( ) |) )( (] ][ [D
i i

I N NMi i

i
L E POD a t E PND a tθ θ θ

=

  
 
  

= ⋅∏                           (14) 

 
Consider an extreme case in which the crack sizes are very small such that the POD(a) is nearly 
zero resulting in no detections, i.e., 0

iDN = .   Equation 13 can be simplified further to: 
 

( )
1

( ) ( ) | )( ][ Mi
i

I N

i
L E PND a tθ θ

=

  
 
  

=∏                                             (15) 

 
If there is only one inspection, I = 1, the maximum likelihood of non-detection will occur when 

( ) | )]([ iE PND a t θ   is at the maximum.   This maximum is associated with a θ  that characterizes 
the smallest possible crack sizes that are hard to detect.   In fact, if θ  is not constrained, the 
maximum would occur when there are no cracks at all such that PND = 1.  In reality, however, θ  
is constrained by material characteristics and manufacturing qualities.   
 
COMBINATION OF WITH-AND-WITHOUT CRACK SIZE MEASUREMENTS 

A situation may arise when a portion of the detected flaws has sizing measurements but the 
remaining detections have indications but no sizing information. For this scenario, it is 

θ
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straightforward to establish ( )DL θ  by creating a product of likelihood functions using equations 4 
and 6.  
 
LIKELIHOOD FUNCTION COMPUTATIONAL METHODS 

By using a sampling-based method, the main computational challenge is to calculate ( )L θ  
efficiently for a large number (e.g., thousands or more) of θ samples/realizations.  For each 
realization, the crack size PDF, ( ( ) | )a if a t θ , is needed at each time of inspection, it , for all the 
inspection results, with or without detections.  
 
To minimize the computational effort, three approaches have been developed.  The first two 
approaches were investigated earlier (Ref. 2).   The third approach, developed and used for this 
study, has been found to be numerically more robust and more suitable for the current study.   
However, the three approaches have their pros and cons and should be selected based on several 
factors including speed, accuracy, robustness, and computational implementation issues.  
 
Approach 1:  Limit-State Based CDF Analysis 

This approach evaluates the PDF of the crack at Da a= , where Da  denotes the detected sizes or 
the sizes needed to compute ( )DL θ  and ( )ML θ .  The PDF can be computed using a numerical 
differentiation scheme such as: 
 

0

( | )
( | ) lim

( )D
a D a

iF a
a

a
tf θ

θ
∆ →

∆
=

∆
                                            (16) 

 
where ( | )a DF a θ  is the CDF of the defect at Da a=  and can be computed by a conventional limit-state 

reliability analysis method based on the following formulation:  
 

( ( ) | ) Pr[ ( | ,  ) ]Da i i DF a t a t aθ θ= ≤X                                          (17) 
 
where ( | ,  )ia tθX  is the crack growth function  in which X is a set of random variables such as crack growth 

material parameters.  
 
When a commonly used sampling method, such as Markov chain Monte Carlo (MCMC), is 
selected to update the posterior PDF (Ref. 2), the total number of times the CDF function, 

( | )DaF a θ , needs to be calculated is proportional to the number of samples as well as the number 
of CDF analysis needed to compute ( )L θ . Therefore, Approach 1 is suitable if ( | )DaF a θ  can be 
computed analytically or numerically easily. 
 
Approach 2:  CDF Response Surface 

Prior to the Bayesian-updating sampling process, a single “global” response surface (a surrogate model) of 
( | )a DF a θ  can be created, for a range of θ , to replace the original CDF.   Aside from the initial “pre-processing” 

time to create a proper response surface, the subsequent CDF analysis time for Bayesian updating can be drastically 
reduced.  However, building a sufficiently accurate response surface model could be challenging, especially if the 
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CDF function is highly nonlinear or ill-behaved.  Additionally, the analysis errors from the limit-state reliability 
analyses must be carefully controlled to reduce the modeling error. 

 
Alternatively, multiple “local” response surfaces of ( | )a DF a θ  can also be created during the 
Bayesian-updating sampling process, for each θ  realization. 
 
Creating a global response surface entirely during a pre-processing stage is a useful advantage, but 
constructing a sufficiently accurate response surface can be challenging because the global 
response surface must cover a sufficient range of θ .  Conversely, creating local response surfaces 
must be done “on demand”, for each θ  realization, and will slow down the Bayesian-updating 
sampling process, although the computational task of response surface model-building may be 
drastically simplified.  
 
In principle, the response surface approach can be applied directly to the crack size PDF function.  
However, this alternative method is not recommended because the CDF function is, by definition, 
a monotonic function, which is relatively easier to fit with a lower-order response surface.    
 
Approach 3:  CDF Fitting 

In this new approach, a selected number of random samples of ( ) |l ia t θ  are generated for each θ and used to 

establish an empirical CDF function, ( )( | )a ia tF θ .  A numerical differentiation method is then used to compute 

( )( | )a iDa tf θ .   From ( )( | )a ia tF θ , separate sets of random crack sizes are generated to compute 

[ ( ( ) | )]l iE POD a t θ  and [ ( ( ) | )]l iE PND a t θ .   
 
The created ( )( | )a ia tF θ  can be used for a wide range of crack sizes.  The efficiency of the approach is 

proportional to the computation time for generating random samples ( ) |ia t θ from the crack growth model.  In the 

demonstration example, this approach will be selected because generating random samples ( ) |ia t θ from the crack 
growth model is simple and fast. 

 
Unlike the above two approaches, Approach 3 does not require numerous direct computations of ( )( | )a iF a t θ  by 

using a limit-state reliability method.  Therefore, this approach is preferred if generating random crack sizes for CDF 
fitting is faster than constructing a CDF response surface by the limit-state reliability method.  This approach is also 
easier to apply and more robust because the CDF curve-fitting involves a single response variable.   

 
SAMPLING METHODS FOR BAYESIAN UPDATING 

MCMC is a method widely used to avoid the tedious calculation of the normalization factor (Refs. 
8-9) and was used in the precious Bayesian-updating research (Ref. 2).   In this study, constructing 
the posterior PDF is not needed.  Instead, the problem has been simplified to locate the optimal θ  
to maximize ( )L θ .  This optimization problem can be solved by a numerical procedure without 
resorting to using MCMC or other sampling methods.   However, in general, MCMC is 
recommended in order to view the entire posterior distribution. 
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4.0 FRACTURE MECHANICS EXAMPLE 

ANALYTICAL MODEL 

The selected problem is a fatigue reliability model originally developed for a ship-structure 
application (Ref. 10) and was used in the previous Bayesian-updating research (Ref. 2).  The 
limit-state function is: 
 

( )
( ) 1

( )
m m
Sm

Y

f

o

a

a

da mg t C t A
BY a a

υ ε
ε π

 = − Γ + 
 ∫                                   (18) 

where 
 
aoao =  Initial crack depth 
afaf  =  Final crack depth at failure 
Y(a)Y(a)  =  Geometry function of the crack shape 

,C m     =  Crack growth parameters 
υ          =  Stress range annual frequency (cycles/year) 
tt   =  Time under consideration (year) 

Yε        =  Model uncertainty for geometry  
A, BoA, Bo   =  Weibull parameters for stress range  
 
The defect is modeled as a surface crack on a plate with a width of 10,000 mm and a thickness of 
30 mm. The random variables and fixed parameters are listed in Table 1.  For m = 3, the defect-
growth function can be derived analytically as: 
 

3 3
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23(1 )1
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B
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a t
υ ε

ε π

 Γ +
 −
 
  

=                                              (19) 

which can be used to generate random crack sizes easily and quickly – which leads to the selection 
of Approach 3 as the best computational method. 

The probability-of-failure is defined as pf  = P[g < 0] where g = Plate depth – a(ts), in which ts = 
10 years.  By using a reliability analysis software with a specified 5% error bound, the probability-
of-failure was pf  = 0.01225.    
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Table 3.  Input Data for the Test Example  

 
 

The POD has an exponential distribution with a mean value of 1/λ .  The POD and the PND curves 
for a baseline value of =1.279 mm are plotted in Figure 1. 
 

 ( ) 1 exp( )POD a aλ= − −                                                   (20) 
 

 
Figure 11. POD and PND Curves 

 
MODELING OF θ  

In general, the Bayesian updating methodology is capable of handling multiple θ  variables.  For 
this study, only one variable will be selected in order to focus on the main research issue.   The 
selected θ variable is the mean value of the initial flaw size (IFS).  The true IFS size is assumed 
to have an exponential distribution with a mean value of 0.11 mm.  The prior PDF of θ is 

Name Description Distribution Mean Std. Dev.
ai Initial crack depth (mm) Exponential 0.11 0.11
C Crack growth parameter (lnC) Normal -29.7 0.29997

ln_A Weibull stress parameter (lnA) Normal 2.26 0.14916
Inv_B Weibull stress parameter (1/B) Normal 1.43 0.1001
es Stress modeling error Normal 1 0.1
ey Random geometry factor Normal 1 0.1

Name Description Fixed Values
vo Average stress cycles per year 2.50E+06
m Crack growth parameter 3
r Crack aspect ratio (a over C) 0.15
z Plate thickness (mm) 30
b Plate width (mm) 10000
T Time (years) 5
af Final crack depth (mm) 30
am Measured crack depth (mm) 10
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modeled as: (1) a uniform distribution between 0 and 0.25 mm, or (2) a normal distribution,  with 
a mean value of 0.13 mm and a coefficient of variation of 20%, i.e., ~( ) Normal(0.13, 20%)f θ .   
To illustrate the range of IFS, Figure 2 plots the PDF curves for three ' sθ  and 100 random samples 
of crack sizes based on 0.11θ = mm.   
 

 

Figure 12.  Crack Size PDFs and Random Crack Sizes 

 
SIMULATION OF DETECTION DATA 

The crack sizes at the time of inspection are simulated using the true initial flaw size PDF as 
illustrated in Figure 2.   To simplify the analysis, only one inspection, at t = 5 years, is assumed.   
By applying equation 19, 500 defect sizes were randomly generated to simulate detected defect 
sizes.  In one random simulation, 17.6% of the defects is detected for = 1.279 mm.  Figure 3 
shows the histograms of the detected and missed defects.  The detection probability reached 
about 50% for = 7.67 mm, 90% for = 102 mm, and 100% for = 10000 mm.  For the 
study, the value of  was adjusted to simulate the effectiveness of detections.   Three POD cases 
were chosen for comparison:  Ideal (detection probability = 100%), Bad POD (detection 
probability = 0 %), and Fair POD (detection probability = 20 - 50%). 
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Figure 13.  Histograms of the Detected and Missed Cracks 

 
IDEAL POD WITH DEFECT-SIZE MEASUREMENTS 

This case provides the best-possible Bayesian updating result and therefore can suggest the 
minimum number of detections needed.  Since all the defects can be detected and measured, ( )L θ  
can be computed using ( )DL θ  as formulated in equation 4.  
 
To compute the PDFs, Approach-3 described above was used to generate an empirical CDF given 
each of the θ  values selected for analyzing ( )L θ .  As an example, Figure 4 shows the original 
CDF, the fitted CDF, and the computed PDF using 1000 randomly generated crack sizes.  To 
improve the fitting performance, the empirical CDF was scaled using standard normal variate, and 
the crack size was scaled by a log-transformation.  For this problem, the scaled polynomial model 
appears to be adequate for investigating the ( )DL θ  behavior.  In general, if needed, the CDF-fit can 
be improved by using splines, kriging, or other interpolation models.   
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Figure 14.  Original and Fitted Crack Size CDF and the Computed PDF 

Figure 5 summarizes the result of the likelihood of detection, using equation 4, for 10, 20, 50 and 
100 defects.  The result shows that the maxima of the ( )DL θ  curves converge toward the true mean 
value of 0.11 mm as the number of detected cracks becomes larger.   The curvatures of the curves 
are clearly larger for more detections, implying that more detections will provide more 
discriminating evidence towards the true θ .  Thus the shapes of the curves are consistent with the 
expectation that the optimal θ  should converge towards the true mean value as more 
observables/evidences become available. 
 

 

Figure 15.  Likelihood of Detection 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-4

-2

0

2

4
Original and Fitted Crack Size CDF

log(Crack Size (mm))
S

td
. N

or
m

al
 V

ar
aa

te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
Crack Size PDF

Crack Size (mm)

P
D

F

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

-2

10
0

10
2

10
4

10
6

10
8

Likelihood for Detecting Cracks vs. θ

θ = EIFSmean (mm)

L D (C
ur

ve
 F

itt
ed

)

 

 

10 Found
20
50
100



 

D-16 

The ( )DL θ  curves in Figure 5 show that the resulting θ  identified at the peak of ( )DL θ  is better with 
10 defects than with 20 defects.  This inconsistency can be traced to the sampling variability.   To 
investigate the issue, a total of 5 sets of 100 random crack size samples were used to compute 

( )DL θ  for 1 to 100 detected cracks.   For each number of cracks, the optimal θ was collected, and 
the optimal θ  versus the number of detected defects were plotted as shown in Figure 6.   From the 
resulting scatters, one can conclude that the sampling variability caused slow convergence – it 
appears that more than 50 detections are needed.  This suggests, not surprisingly, that a good prior 
would be essential when the number of detections is small. 
 

 

Figure 16.  Optimal θ versus the Number of Defects for 5 Random Populations of Crack Sizes 
 

BAD POD (NO DETECTIONS) 

This case examines the worst-case scenario where the detection device is very poor, resulting in 
no detections.  In general, the all-misses scenario can be caused by either ineffective detectors or 
extremely small defects.  In our test case, however, since the defect size are significant (see Figure 
2), it is clear that the cause of the all-misses is the bad POD. 
 

( )L θ  can be computed using ( )ML θ  because all the defects are missed.  Figure 7 shows ( )ML θ for 
10, 20, 50 and 100 defects.  All the curves show that the optimal ' sθ  are the lower bound of θ .  
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Figure 17.  Likelihood of Missing Detections 
 
By comparing Figure 7 with Figure 5, several interesting observations can be made: (1) For each 
curve, ( )ML θ  is a monotonic function – with a negative slope, which implies that the updated mean 
value of IFS would favor the smallest possible θ  associated with small initial defects that can 
explain why all the detects have been missed. (2) The absolute slopes of the curves are greater for 
larger numbers of misses, implying that more misses will provide more discriminating evidence 
that the true θ  is small. (3) While the maxima of ( )DL θ  are well within the bounds of θ  (close to 
the true mean value), the maxima of ( )ML θ  are at the left extreme and do not provide information 
toward the mean value.   
 
The third observation is particularly important.  It supports the expectation that a good POD will 
provide useful information for updating.  More importantly, it implies that the results from a bad 
POD can provide misleading evidence and should not be used for Bayesian updating.     
 
FAIR POD 

From risk-reduction perspectives, an inspection has no benefit when the POD is near zero.  It is 
more practical to conduct inspections when the defects can be found with a significant probability, 
before the probability-of-failure cannot be tolerated.  In the case below, a population-POD of 0.5, 
i.e., half of the defect population is expected to be detected, is used to study the effect of including 

( )ML θ  in the likelihood function.  To gain a better understanding of the significance of including 
the missed defects, two prior PDFs are assumed: a uniformly-distributed prior and a normally-
distributed prior.  In both cases, the posterior PDFs for Ideal POD, Bad POD, and Fair POD are 
compared.   
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Uniform Prior 

The uniform-prior assumption is useful in that it is free of prior bias so that the effect of including 
( )ML θ  is easier to assess.  Figure 8 presents the posterior PDFs (all curves have been normalized 

to have the same maximum height), which are identical to the ( )ML θ  curves since the prior PDF 
is a constant.  It can be observed that:  (1) For Ideal POD, the size measurements lead to an 
excellent optimal θ . (2) For Bad POD, the optimal θ  is the lower bound of θ , therefore, the 
counting of the misses does not produce an improved optimal θ .  (3) For Fair POD (with 50% 
population POD) with the inclusion of the counting of the misses, the optimal θ  is fair.  (4) For 
Fair POD but without the inclusion of the counting of the misses, the optimal θ  is clearly inferior 
to the case with the inclusion.  One can conclude, therefore, that the inclusion of the counting of 
the misses has a significant effect for Fair POD.   
 

 

Figure 18.  Updated PDFs with Uniform Prior for Ideal, Bad, and Fair PODs 
 
Normal Prior 

The prior PDF is ( ) ~ Normal(0.13mm, 20%)f θ , which has an optimal θ  larger than the exact 
value (0.11 mm).   Figure 9 shows that the normalized posterior PDFs.  It can be observed that: 
(1) For Ideal POD, the optimal θ  is slightly inferior when compared with the Uniform Prior 
case, which can be explained by the shape of the prior PDF.  (2) For Bad POD, the optimal θ  is 
essentially the same as that from the prior PDF, which implies that the prior PDF dominates the 
effect from the inclusion of the counting of the misses. (3) For Fair POD, and with the inclusion 
of the counting of the misses, the optimal θ  is closer to the true value than that from the Uniform 
Prior case (Figure 8), which can also be explained by the bias in the prior PDF.  (4) For Fair 
POD but without the inclusion of the counting of the misses, the optimal θ  is again inferior to 
the one that include the misses.  One can conclude that, while the prior PDF has a strong 

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 θ

No
rm

al
iz

ed
 P

os
te

rio
 f(

θ)

Updated θ with Prior θ ~ Uniform

 

 

All Detected & Measured
All Missed Counted
1/2 Meas. + 1/2 Counted
1/2 Meas. + 1/2 Ignored
Exact θ



 

D-19 

influence to the updated optimal θ , the inclusion of the counting of the misses still has a 
significant effect for Fair POD. 
 

 

Figure 19.  Updated PDFs with Normal Prior for Ideal, Bad, and Fair PODs 

 
5.0 SUMMARY AND DISCUSSIONS 

This report presents a DT-based Bayesian updating framework which includes both the detected 
and the missed detections.  To demonstrate the methodology, a tailored sampling-based approach 
has been developed to compute likelihood functions for all the inspection results. 
 
Using a DT example, the result suggests that (1) a good POD with sizing information have a useful 
dominating effect for updating, (2) the non-detection results from a bad POD can provide 
misleading evidence and should not be used for Bayesian updating, (3) when the inspection POD 
is reasonably effective, the inclusion of the count of non-detections can provide useful information 
for Bayesian updating.   
 
In summary, this study suggests that recording and utilizing complete inspection results, i.e., 
including non-detections, can be important and beneficial for aircraft reliability and risk 
management, including RBMO applications.   
 
The effect of uncertainty in POD model should be investigated in the future, because of the 
important role POD played in DT and also the fact that POD can be highly uncertain. 
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APPENDIX E—STRENGTH-CONDITIONED IMPORTANCE SAMPLING METHOD FOR 
AIRCRAFT DAMAGE-TOLERANCE RELIABILITY ANALYSIS 
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1.0 ABSTRACT 

 
Aircraft damage-tolerance reliability models, in general, involve time-independent strength-related random variables 
and time-dependent stress random processes.  The single-flight reliabilities between the flights are correlated due to 
strength-related random variables.  These correlations often make computing the interval reliability difficult, and is 
inevitably very time consuming.  In conventional methods, either the correlations are ignored or the approximate 
reliability bounds are used to address the issues.  This report summarizes a new Strength-Conditioned Importance 
Sampling (SCIS) methodology which integrates the Strength-Conditioned Expectation Method (SCEM) with a special 
Importance Sampling (IS) methodology.  The SCEM makes the flight-to-flight reliabilities independent which allows 
the interval reliability for each strength realization to be computed accurately and easily.   More importantly, the 
efficiency issue is dealt with by using a tailored IS approach to reduce drastically the number of random samples 
which is required to achieve a desired level of accuracy.  In theory, the SCIS method is versatile and can handle either 
gradual or sudden strength-changing events. Furthermore, for risk-optimization purpose, the IS samples can be re-
used to compute reliabilities for various maintenance plans.  This report documents the SCIS method and presents a 
demonstration example using a fracture mechanics model.   
 

 
2.0 INTRODUCTION 
 
It is well known that metal fatigue could cause major aircraft structural failures.  To help prevent failures, significant 
efforts and progress have been made in the last few decades to develop safer design methodologies including 
probabilistic design methodology and tools, with the emphasis on fatigue and fracture (e.g., Refs. 1-4).   Other sources 
of structural failures which have received relatively less attention are environmental effects (due to, e.g., moisture and 
temperature variations) and impact damage that can significantly reduce the strengths over time.  With the increasing 
use of new materials for aircraft structures, the ability to model and assess the risk of strength degradations has become 
more important, especially for dealing with events which may cause significant gradual or sudden changes in the 
remaining strength and life.  If the damages or degradations are not detected and fixed in time, they can potentially 
cause unexpected structural failures.  
 
This report presents a probabilistic damage-tolerance analysis (PDTA) methodology designed for time-dependent 
reliability models which involve various strength random variables and stochastic loading processes.  Figure 1 
illustrates a time-dependent reliability model where the reliability is governed by the degree of overlapping of the 
applied load distribution and the remaining strength distribution which deteriorates due to the growth of defects or 
other damages.  In general, the rate of strength reduction, and therefore the rate of failure, could be enhanced due to 
aging and environmental factors and the impacts can occur multiple times.   
 
Aircrafts are routinely inspected including walk-around inspections for apparent damages and scheduled inspections 
for detecting smaller or hidden damages using specialized NDE devices.  When a defect or damage is detected and 
fixed, the strength is altered, possibly drastically.   Therefore, in building a reliability model, the quality of the 
repaired/replaced parts should be incorporated in modeling the altered strength.  With a proper reliability model, the 
inspection schedules can be optimized by controlling the risk subject to reliability, operational and other constraints.  
For example, the timing of the inspections should be selected such that the dangerous defects/damages can be detected 
with a high probability of detection but before the probability-of-failure becomes unacceptable.  Several risk-based 
maintenance optimization (RBMO) approaches have been proposed in recent years (Refs. 5-8).  These approaches, 
however, were designed for metal fatigue models and cannot be easily applied to more general time-dependent 
reliability models.   
In PDTA, the sources of uncertainty include systematic and random errors of the failure models, applied loads, 
material properties, geometries, environmental factors, defect and damage occurrence rates, and detection capability.  
As illustrated in Figure 1, aircraft structural reliability models, in general, can involve time-independent strength-
related random variables (RVs) and time-dependent stress random processes.  While vary among different aircraft in 
a fleet, the strength-related RVs, such as the fracture toughness and the initial flaw size, at a certain location, are 
essentially time independent for individual aircraft.  Therefore, the single-flight reliabilities between the flights are 
correlated due to strength-related random variables.   These correlations often make computing the interval reliability 
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difficult and inevitably very time consuming.  As a result, either the correlations are ignored or the approximate 
reliability bounds have to be used to address the issues. 
 
 

 
Figure 1. Description of Time-Dependent Reliability Problem 

To accurately and efficiently compute time-dependent reliability and conduct RBMO, this report presents a new 
Strength-Conditioned Importance Sampling (SCIS) methodology which integrates the Strength-Conditioned 
Expectation Method (SCEM) with a special Importance Sampling (IS) methodology.  The SCEM makes the flight-to-
flight reliabilities independent which allows the interval reliability for each strength realization to be computed 
accurately and easily.   More importantly, the efficiency issue is dealt with by using a tailored IS approach to drastically 
reduce the number of random samples which is required to achieve a desired level of accuracy. Furthermore, for risk-
optimization purpose, the IS samples can be re-used to compute reliabilities for various maintenance plans.  
   
This report documents the SCIS method and presents a demonstration example using a fracture mechanics model.  
The SCIS approach has been implemented in a Matlab program, FlyRisk, for the demonstration.  The SCIS reliabilities 
for both the “with” and “without” inspection cases are computed and validated using standard Monte Carlo with large 
sample sizes.   
 
3.0 STRENGTH-CONDITIONED METHODOLOGY 

 
Overview of Time Dependent Reliability Model 
 
The basic assumption for the proposed methodology is that the initial structural strength, R, is a function of time-
independent random variables, X, and the residual strength may change over time, t, due to loading (random and 
impact) and environmental (temperature, moisture, etc.) effects, until the structure has survived the service life, 
repaired/replaced, or failed.  Because the duration of each flight is relatively short, R is assumed to be constant during 
each single flight.   However, the applied load is a stochastic process which can vary significantly during each flight.  
For this study, the probability distribution of the loads is assumed to be independent between the flights. 
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Based on the above assumptions,   a structural failure will occur if, during any flight, i, the strength is exceeded by the 
maximum stress, denoted as ( )i iS t . Therefore, the single-flight probability of survival, or reliability, for the i-th flight 
is: 
 

( ) [ ( , ) ]Survival i i i iP t P R t S= >X                 (1) 
 
The cumulative or interval reliability for the duration of 1t t=  to Nt  is the probability of survival for N flights and 
can be formulated as: 
 

{ }1 1 2 2( ) [ ] [ ]... [ ]Survival N N NP t P R S R S R S= > ∩ > ∩ >   (2) 

Denoting i i iE R S= > , Equation 2 is abbreviated as: 
 

{ }1 1 2( : ) [ ...Survival N NP t t P E E E= ∩ ∩            (3) 
 
Due to the correlations between 'iR s  or 'iE s , an analytical solution for the cumulative reliability is generally 
unavailable.  There are several solutions to compute 1( : )Survival NP t t , including the bounding approach, which provides 
approximate answers, and the Monte Carlo approach, which is usually time-consuming.  In the following, we will 
discuss the limitation of the bounding approach and propose an alternative random sampling approach that is highly 
efficient relative to the MC approach. 
      
Reliability Bounds 
 
The statistical correlation between any two events i i iE R S= −  and 

j j jE R S= −  is: 
 

[ ]
i j

i i

i j i j
E E

E E

E E E E E E E
ρ

σ σ

   −   =                 (4) 

Assuming iS  are independent and identically distributed, it can be shown that 
2

i j i j

i j

i j

R R E E S
E E

E E

ρ σ σ σ
ρ

σ σ

+
=                     (5) 

Physically, since a realization of X that results in a relatively higher/lower ( , )i iR X t  at it  will likely results in a 

higher/lower ( , )j jR X t  at jt , the correlation
i jR Rρ  is expected to be positive and 0

i jE Eρ  .  The positive correlation 

leads to the following uni-modal bounds (e.g., Ref. 9): 
 

1

min
i i

N

S S Sii

P P P
=

≤ ≤∏                        (6) 

 
Without maintenance, reliability is either constant or monotonically decreasing due to strength deterioration.  
Therefore, the last single-flight reliability is the reliability upper bound, i.e., min

i NS Si
P P= .  For a conservative aircraft 

risk assessment, the lower bound of the reliability, or the upper of the probability-of-failure, is used.  
 
Expressed in terms of probabilities of failure, Equation 6 can be converted to: 
 

1

max 1 (1 )
i i

N

f f fi i

P P P
=

≤ ≤ − −∏                  (7) 

 
For small

if
P , the case for aircraft applications, the above equation can be approximated as: 
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1
max

i i

N

f f fi i
P P P

=

≤ ≤∑                        (8) 

 
Thus, the upper bound of the interval probability-of-failure, which is conservative, is approximately the sum of the 
single-flight probability-of-failures, 

if
P∑ . 

 
Example:  Consider a special case where there is no strength deduction and the single-flight probability remains 
constant, 

if
P λ= .   The corresponding bounds are: 

i if f fP P NP≤ ≤                                (9) 
 
For a constant failure rate λ , the time to failure has an exponential distribution and the exact probability-of-failure 
is: 
 

1 N

Exactf
tP e λ−= −                            (10) 

 
For example, let N = 20000 flights with a small single-flight failure rate of 1.0 8eλ = − .  The exact probability-of-
failure is 1.9998 4

ExactfP e= − , and the bounds are: 
 

1. 8 2.e-4fe P− ≤ ≤                          (11) 
 
which shows that the upper bound, more important for aircraft risk assessment, is excellent while the lower bound has 
a large error. 
 
Even if the single-flight probability-of-failure is 2 orders of magnitude higher than the above example, the exact 
interval probability-of-failure is 1.98 2

ExactfP e= −  and the bounds are: 
 

1. 6 2.e-2fe P− ≤ ≤                         (12) 
 
which shows that the upper bound is approximately 1% higher than the exact.  For aircraft applications, the above 
cases suggest that the upper bound solution 

if
P∑  can be a good approximation provided that there is no significant 

strength deterioration during the flight- interval of interest.   
However, for the case with a decreasing strength, as in fatigue crack growth, aging, or after impacts, the single-flight 
probability-of-failure should be increasing: 

1 2
...

Nf f fP P P< <                            (13) 
 
Therefore Equation 8 becomes 

N Nf f fP P NP< <                            (14) 
When the service life approaches the wear out stage, the f i

P may increase sharply.  As a result, the value of 
if

P∑  may 

be dominated by the later flights, and the bounds can be expressed as: 

1
N i N

N

f f f
i

P P NP
=

< <<∑                      (15) 

 
In other words, the upper bound 

NfNP is too conservative.  In summary, for aircraft risk assessment, the upper bound 
can provide a quick estimate but the bound is too conservative in general for decreasing strengths.  The method 
described below can remove the conservatism and is computationally efficient.   
 
Strength-Conditioned Expectation Method (SCEM) 
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The foundation of the SCIS approach is the strength-conditioned expectation method (SCEM) which separates the 
strength random variables X and the random stress S to create independencies between the conditional 'iE s  for 
accurate reliability calculations.   By conditioning on the X random variables, 1( : )Survival NP t t  can be computed by 
generating a set of X realizations and taking the sampling average.  Figure 2 illustrates the concept of SCEM using 20 
realizations of X variables. 
 

 
Figure 2.  Concept of Strength-Conditioned Expectation Method (SCEM) 

 
For each j-th realization of X, the 'iS s  are independent, therefore, the conditional failure events are independent, 
which leads to:  
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   (16) 

 
where  is the conditional single-flight reliability which is relatively easier to compute than the 

unconditional single-flight reliability ( )Survival iP t .   
 
The unconditional cumulative survival probability is the integral of the unconditional survival probability weighted 
by the PDF of X: 

 

1 1( : ) ( : | ) ( )c
f n f nP t t P t t f d= ∫ Xx x x           (17) 

 
which can be expressed in terms of the expectation function and estimated using a sampling average: 
 

1

1 1
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1                    ( )
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where J is the number of random samples.  The cumulative probability-of-failure is denoted as 
1 1( : ) 1 ( : )f n Survival nP t t P t t= − . 

 
Similar to Equation 18, the single-flight probability-of-failure is: 

1
( )

1( ) [ ( )]
j j

c
f i

J
c

f i f i f
j

P tP t E P t
J =

= = ∑X
         (19) 

The drawback in using the above averaging approach is that a large J is typically needed for estimating a very small
( )S NP t .   

 
STRENGTH-CONDITIONED IMPORTANCE SAMPLING (SCIS) 
 
The proposed SCIS approach, presented below, is mathematically rigorous for treating correlated random variables 
between flights, is versatile for treating gradual or sudden strength-changing events, and is computationally much 
more efficient than SCEM.  In addition, since the SCIS approach is sampling based, the sampling structure for 
computer-based simulation lends itself to simulate highly complex random events.   
 
The SCIS method requires only a small fraction of the random samples for reliability computations.  The efficiency 
is achieved by generating the X samples in a smaller, focused sampling region Ω  that covers the domain of the events 
where ( )

jS nP t  is nonzero and Equation 19 is modified to: 

11

|

( )
1( ) (1 ) 0

         ( )

j

n

S i
i

J

S n
j

S n

P tP t P P
J

P P t

Ω

=
Ω Ω

=Ω

Ω Ω

= + − ⋅

= ⋅

∏∑        (20) 

in which PΩ  is the probability in Ω  and | ( )S nP tΩ  is the conditional reliability in Ω .    
The focused sampling can be generated, in general, by a Markov Chain Monte Carlo method or other advanced 
sampling methods (see, e.g., Refs. 10-13).  To maximize the efficiency, the SCIS-based MCMC method has been 
designed to minimize the sampling region while controlling the sampling error.   
 
In the SCIS procedure, the samples of X are generated using only the last single-flight failure probability.  
Subsequently, the samples are used for all the flights starting from the first flight to compute cumulative reliability. 
 
The unconditional single-flight failure probability is the integration of the unconditional single-flight failure 
probability weighted by the PDF of X: 

 
( ) ( ) ( )c

f n f nP t P t f d
Ω

= ⋅∫ X x x                  (21) 

To minimize the sampling region, the domain of X, Ω , is divided into 2 domains, 1Ω  and 2Ω , such that 1 2Ω = Ω +Ω
, where the probabilities in the two domains are: 

( )    (   1: 2)
i

i

p f d iΩ
Ω

= =∫ X x x                  (22) 

with
1 2

1p pΩ Ω+ = .  Using Equation 22, Equation 21 can be rewritten as 
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=
 (23) 

The division of Ω  is defined by selecting a truncation limit of ( )c
fP f⋅ X , 

LimitP , such that 
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1

2

  if ( )

  if ( )

c
f Limit

c
f Limit

X P f P

X P f P

⊂ Ω ⋅ ≥

⊂ Ω ⋅ <

x

x
                  (24) 

 
The purpose of the above truncation is to minimize the number of SCSI samples by ignoring the samples in the  
domain with a small, controlled error in ( )f nP t .  The truncation limit can be found by generating a set of pilot samples 

of ( )c
f nP t  using the Markov Chain Monte Carlo method with a prescribed target PDF of ( ) ( )c

f nP t f x . Assuming K 
samples have been generated, the corresponding samples in the two domains, denoted as 1K , 2K , are approximately 

proportional to  and 
2

pΩ .  Therefore, Equation 23 becomes: 
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in which the relative error in 
fP  due to truncation is: 
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After selecting an error, a search procedure can be devised to find the truncation limit LimitP  and accept the 
corresponding 1K  samples for SCIS.  Alternatively, a new set of SCIS samples can be regenerated using the selected 

LimitP . 
 
By applying the samples within the truncation envelope, Equation 23 is approximated by: 
 

1

1 1
1

( ) ( )
i

K
c

f n f
i

P t p PΩ Ω
=

≈ ∑                      (27) 

Based on Equation 25, 
1

pΩ  is 

1 1

1
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( )
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c
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i

P t
p

P
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Ω
=

=

∑

                            (28) 

in which ( ) 1 [( ( , ) )]f n n n nP t P R t S= − >X  can be computed by a limit-state reliability method.  It should be noted that 

( )f nP t  needs to be computed only once.  The associated IS samples are then used for computing both the single-flight 

failure probability ( )f iP t  and the cumulative failure probability 1( : )f iP t t  for all the flights, i.e., 1 :i nt t t= .   
 
It should be noted that the SCIS framework is intended to address different materials including composites.  In fact, 
from the theoretical perspective, a major advantage of the SCIS method is in its capability to handle a broad range of 
strength-changing models, either gradual or sudden, including degradation, impact damage, and maintenance.  For 
various types of strength-changing events, the main difference in applying the SCIS approach is in the use of respective 
strength-changing models, while the creation of the IS samples are based on their weighted conditional probabilities-
of-failure, ( ) ( )c

f nP t f x .  For highly complex strength-changing events, the successful implementations of SCIS may 
require improved sampling algorithms in order to generate high quality SCIS samples efficiently. 
 

2Ω

1
pΩ
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In the following section, the SCIS approach will be demonstrated using a metal fatigue damage-tolerance example 
because such a model is well accepted and is easy to calculate and therefore suitable for researching various 
approaches.  
 
4.0 DEMONSTRATION EXAMPLE 
 
The selected example analyzes the risk of crack growth at a fastener hole. The random variables were duplicated from 
a paper by Shiao et al. (Ref. 14).  The random variables include EIFS, fracture toughness, and maximum stresses.  
 
The equivalent initial flaw size (EIFS), ia , has the following Weibull distribution with η  = 0.0061 in. and β  = 0.996. 

( )( ) 1 exp[ / ]
ia iF a a βη= − −                  (29) 

The fracture toughness, CK , is normally distributed with a mean = 35 and a standard deviation of 3.1 ksi in⋅ .   The 
maximum stress, S, has a Gumbel distribution defined in Equation 30 with A = 1.31 ksi and B = 14.6 ksi. 
 

{ }( ) exp exp[ ( ) / ]SF s s B A= − − −             (30) 
 
The CDFs and the PDF of the random variables are plotted in Figures 3 to 5. 

 
Figure 3.  PDF and CDF of EIFS 

 
Figure 4.  PDF and CDF of Fracture Toughness 
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Figure 5.  PDF and CDF of Maximum Stress 

 
The crack size a versus time t for damage-tolerance analysis is shown in Figure 6 as the “master” curve.  For any 
realization of EIFS, the curve is shifted to match the crack size at time t = 0.  For this study, the curve is fitted using 
Equation 31: 
 

( ) exp( ) 0.0003 exp(0.0001015 )oa t a bt t= = ⋅      (31) 
 
For a given EIFS, the shifted curve is: 
 

( ) exp( )o shifta t a bt t= +                    (32) 
  
in which the time shift is: 
 

1 ln i
shift

o

at
b a

=                                 (33) 

 
Figure 6.  Crack Size Versus Time Model 

 
The relationship between the stress intensity factor ( ( ) /CR a K σ= ) and the crack size is shown in Figure 7. 
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Figure 7.  Normalized Stress Intensity Factor 

 
Four POD curves were selected which were modeled using the following equation: 
  

min 50 min

1( )
ln( ) ln( )1 exp

3

POD a
a a a a

q
π

=
 − − −

+ − 
 

        (34) 

where 50a  is the crack size which can be detected 50% of the time, q is a scale parameter, and mina  is the minimum 
crack size that can be detected. The parameters for the POD curves are listed in Table 1 and the curves are plotted in 
Figure 8. 
 

Table 1.  Parameters for Four POD Curves 

 
 

 
Figure 8.  Probability of Detection Curves 

The failure limit-state function is: 
 

( )
( ( ))

CKg t Strength Stress R S S
Y a t

= − = − = −       (35) 

The strength-conditioned probability-of-failure is: 
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( ) Pr . 1
( ( )) ( ( ))

c C C
f i S

i i

K KP t S F
Y a t Y a t
   

= < = −   
   

      (36) 

 
Reliability Without Maintenance 
 
Using SCEM with Monte Carlo random samples, the single-flight probability-of-failure ( )f iP t  for it  = 1 to 20,000 
flights is repeated 10 times for 100,000, 1 million, and 10 million X samples.  The results are summarized in Figures 
9 to 11.  The results suggest that, for sufficient accuracy, more than 10 million samples is needed for ( )f iP t  < 1.e-06, 
more than 1 million samples is needed for  ( )f iP t  < 1.e-05, and at least 100,000 is needed for ( )f iP t  < 1.e-04.   For 
demonstration purposes, a minimum of 100,000 samples was used for various test cases.  By comparison, the SCIS 
approach only required 1,000 IS samples. 
 

 
Figure 9.  Single-Flight Probability-of-failure using SCEM with 100,000 MC Samples 

 

 
Figure 10.  Single-Flight Probability-of-failure using SCEM with 1 Million MC Samples 

 

 
Figure 11.  Single-Flight Probability-of-failure using SCEM with 10 Million MC Samples 
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To examine the accuracy of the SCIS solutions, the MC approach with 10 million samples was applied to compute 
the single-flight probability-of-failure ( )f iP t  for ti = 1 to 20,000 flights.   The simulation produced a near-exact solution 
of (20000) 1.30 3fP e= − .  Applying the MCMC approach, 10,000 IS samples were generated to find the truncation limit.  

Figure 12 shows that, for 1% error, 2.08 05LimitP e= − .  The probability of the sampling domain 
1

pΩ
 is 2.412e-03, 

computed using Equation 28. 
 

 
Figure 12.  Probability Estimation Error versus Conditional Probability-of-Failure Truncation Limit 
 
Subsequently, 1,000 IS samples in 1Ω were regenerated by another MCMC procedure. Figure 13 displays the 

(20000) ( )c
fP f⋅ X  function versus the SCIS samples for the two strength random variables (EIFS and Kc) in the 

standardized normal (u) space.    
 
Figure 14 compares the SCIS results (with 1,000 IS samples) with the SCEM results (with 100,000 MC samples) for 
both single-flight ( )f iP t  and cumulative probability 

1( : )f iP t t  for 1 :i nt t t= .   The results from the two methods match 
closely, which demonstrate the accuracy and efficiency of the SCIS method.   
 

 
Figure 13.  (20000) ( )c

fP f⋅ x  for the SCIS Samples with 2.08 05LimitP e= −  
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Figure 14.  Comparison of Probability-of-Failure Results using SCEM-IS and SCEM_MC Methods 

 
Figure 15 compares the SCEM result with the bounding solution.  The bounding solution, which is equivalent to 
ignoring the correlations between flights, is clearly too conservative for practical use. 
 
 
 

 
Figure 15.  Comparison of Cumulative Probability-of-Failure Results using SCEM and Bounding Methods 

 
5.0 SUMMARY 
 
As demonstrated, the SCIS approach accurately treated correlated random variables between flights and was 
computationally highly efficient as compared with the Monte Carlo or the SCEM approach.  Moreover, after the SCIS 
samples are created, they can be re-used to compute the reliabilities with inspections (Ref. 15).   Because the sampling 
is strength conditioned, the SCIS approach is potentially very well suited for dealing with various strength degradation 
effects. 
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